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Letter to the Editor 

 

Glenn T. Cunningham, PhD, P.E. 

 

The question is sometimes raised as to whether manufacturing companies should be concerned 

with energy efficiency and even be committed to establishing and maintaining energy efficiency 

programs. When looking at the general financial landscape of an industrial company there are 

three main costs to be managed. These are raw materials, labor and energy. Managing the use of 

materials needed to produce a product is almost always done well because if this is not, the 

company cannot long exist. Companies naturally do a pretty good job managing labor. If there 

are not enough employees, production levels cannot be maintained. Being overstaffed typically 

does not occur for long periods of time. So, the last area where major cost savings are possible is 

energy. With rising prices for natural gas, oil, electricity and other energy sources ignoring 

energy management can deliver a major financial hit to the bottom line. 

In a world where tracking and reducing carbon emissions is becoming the rule instead of the 

exception, managing energy use is the key factor. In Europe a metric ton (MT) of carbon has an 

actual value of between $75 to $100 per MT, US $. The US does not currently have a carbon tax 

even though States like California and Washington and the northeastern states do have cap-and-

trade programs. Generally speaking, the cost of carbon emissions, both in the US and Europe 

appear to be headed higher in the coming years. Any competent management team must have a 

plan to address this growing cost. 

How should a company think about organizing its energy management activities? A good place 

to start is to research the energy management standard ISO-50001. This standard lays out in 

detail how to establish and run an effective energy management program. While many 

companies decide not to formally pursue obtaining ISO-50001 certification, studying the 
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recommended structure and activities can lead to the implementation of an effective program. 

There is also ISO-50001 Ready, which is designed to get a company started in developing an 

energy management program along the lines of the full ISO-50001 standard. It is sometimes 

called ISO-50001 Light. This can be a good starting point. The US DOE and US EPA also have 

voluntary no cost programs to support energy efficiency programs.  

After years of working with companies on energy management there are some important items 

that should not be ignored. Some of these will be listed and discussed. These are not necessarily 

in any particular order or order of importance. It is not meant to be an all-inclusive list. 

• Upper Management must be committed and involved is the energy efficiency program. 

When an assessment or Treasure Hunt starts at a manufacturing facility having the plant 

manager or someone even higher up the corporate chain of command attend the kick-off 

meeting and say how important the activity is to the success of the company makes a 

world of difference. It sets a tone for the program and the event.  

• Each plant should have an energy champion and a significant portion of their job be 

dedicated to running the energy program. You cannot just add this responsibility to 

someone who already has a full plate of responsibilities. 

• Each plant should have an energy management committee made up of representatives 

from engineering, maintenance, accounting, health & safety and management. This 

committee must meet at least monthly to identify and promote potential efficiency 

projects, work for their implementation and discuss other energy-related issues. 

• Plant representatives should have a relationship with the local utility and generating 

companies providing energy to the plant. Several times per year the plant should have 

their company representatives from the utility companies into the plant to discuss issues 

with the service and any programs the utility might have that could benefit the company. 

Somes there are rebate programs the company never knows about and fail to participate 

in. The utility rate structure should be thoroughly understood by multiple employees at 

the plant. Issues like electrical demand, power factor, time-of-use rates, interruptible 

rates, etc. must be thoroughly understood at the plant. 

• The Energy Committee should run a suggestion/reward program for employees at the 

plant. A suggestion box should be established where all employees can suggest projects 
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or changes in procedures to save energy or make other improvements. Once or twice a 

year energy program should give an award for the best suggestion made during the last 

period of time. An annual award like a long weekend trip to a resort will keep the 

participation rate high. 

• Give out tee shirts, hard hat stickers, etc. publicizing the program. 

• Allocate a pool of funds annually to pay for energy efficiency projects. 

• For multinational companies, if plants where there is no carbon tax must compete for 

funding for projects with plants located where there is a carbon tax, allow both to claim 

the value of reduced emissions at the same carbon value in payback calculations. If the 

plants without a carbon tax cannot include the carbon value in their calculations, they 

cannot compete with the other plants and will receive little or no support for energy 

projects. 

• Annually, hold a corporate meeting of all the energy managers and teams where they can 

present about successful projects and spread the word so these ideas can be implemented 

across the company. 

• Hire a corporate energy manager to communicate with all the plants to help organize and 

run the energy efficiency program. 

• Have members of the most successful plant programs visit other plants to share their 

projects and other secrets of their success. 

• Have weekly video meetings where ideas are exchanged, and plants make suggestions for 

each other. 

• Encourage each plant to hold at least one energy Treasure Hunt each year. The first of 

these may require assistance from outside experienced personnel, but after one or two the 

plant can support this activity internally. 

• Participate in US DOE energy conservation programs and utilize the resources DOE has 

to support the energy efficiency program. 

• Apply for awards and recognition for the program’s successes. Publicize the successes of 

the program. 
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• “You cannot Manage what you do not Measure.” Develop an ability to obtain the 

measurements necessary to accurately quantify savings for suggested energy saving 

projects. 

• Plant managers should have energy performance as one of the deciding factors in 

determining the amount of their annual bonus. In fact, all employees who receive 

performance bonuses should have energy performance as one of the deciding criteria. 

Establishing an energy management program with the characteristics mentioned above will foster 

an environment within the corporation where energy efficiency and environmental stewardship 

can flourish. New employees must be trained in how the program is organized and functions to 

assure it continues and grows into the future. 
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Abstract 

Accurately predicting energy consumption in buildings is vital for optimizing energy efficiency, 

reducing costs, and supporting sustainability efforts. This study uses a dataset that spans and broadcasts 

hourly energy consumption for a specific building in Spain, using a dataset spanning an entire year. 

The dataset includes hourly energy usage in kilowatt-hours (kWh) and features representing 

environmental conditions, including temperature, humidity, and precipitation. alongside time-related 

variables, including the hour of the day, day of the week, and seasonal markers. These features provide 

a detailed view of how internal and external conditions influence energy usage patterns. Data 

preprocessing included handling missing values, feature selection, and engineering temporal variables 

such as Hour, Day of Year, and Is Weekend, which capture essential behavioral and operational 

dynamics. The building analyzed is a representative structure with typical heating, ventilation, and air 

conditioning (HVAC) systems. This model is well-suited for analyzing energy consumption patterns 

across different environmental and operational conditions. Various regression models were applied, 

including Linear Regression, Ridge and Lasso Regression, Support Vector Regression (SVR), K-

 
1 Corresponding Author: Professor Ryoichi Amano, amano@uwm.edu  
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Nearest Neighbors (KNN), Random Forest, XGBoost, and Neural Networks. Model performance was 

assessed using Mean Absolute Error (MAE) and R-squared (R²) metrics. Random Forest emerged as 

the best-performing model, achieving an MAE of 8.33 and an R² of 0.954, highlighting its strong 

ability to capture the building’s energy consumption patterns. This research highlights the potential of 

regression models and artificial intelligence in improving energy forecasting, serving as a foundation 

for advancing building energy management systems. 

 

Keywords: Energy Consumption in Buildings; Energy Forecasting; Artificial Intelligence; 

Annual Energy Savings; Linear Regression; Ridge and Lasso Regression; Support Vector 

Regression (SVR); K-Nearest Neighbors (KNN); Random Forest, XGBoost, and Neural 

Networks. 

 

I. INTRODUCTION 

Nowadays, it is impossible to overlook the changes and oscillations in the energy industry. 

Considering the duty of maintaining and optimizing the current sources and emphasizing the 

significance of energy management throughout the entire system life cycle with all of their 

methodologies and techniques, it also became clear that there is a significant demand for 

dependable yet sustainable energy resources. Closing the gap and developing reliable substitutes 

for such systems are necessary to address this weakness. As mentioned earlier, resource 

allocation, expenditure optimization, and comprehensive but meticulous design objectively relate 

to and significantly impact the need. Key elements of any organization's success and operations 

are the efficiency of resource management, energy optimization, and continuous process 

improvement procedures, which start with identifying, evaluating, and responding to steps for 

improving the current procedure or process and conclude with the steps of documenting and 

recording them for future reference [1] [2]. 

Driven by increasing energy demands, the need to minimize greenhouse gas emissions, and 

governmental policies encouraging energy efficiency, smart energy systems have emerged as an 

effective solution for optimizing energy consumption and promoting sustainability. These 
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systems offer the potential to mitigate the environmental impact of rising energy use due to 

urbanization, industrialization, and population growth by reducing pollution and greenhouse 

gases while conserving resources through intelligent analysis of energy consumption patterns and 

identification of opportunities for waste reduction [3]. 

As energy efficiency becomes increasingly important in mitigating climate change and reducing 

operational costs, developing predictive tools to optimize energy consumption aligns with 

personal and professional goals. This research study uses machine learning techniques to predict 

hourly energy consumption in buildings. By analyzing weather and temporal features, such as 

temperature, humidity, and time of day, the aim is to develop accurate predictive models for 

optimizing energy management. This research paper compares the performance of various 

models, including Random Forest, Ridge Regression, and Neural Networks, to identify the most 

effective approach for this task. In addition to its relevance to sustainability and energy 

management, it also serves as a valuable application of machine learning techniques in such 

fields, bridging theory with a real-world problem. 

Several models were evaluated to predict energy consumption, each chosen for its unique 

strengths in handling different aspects of the data. Random Forest (RF) was evaluated due to its 

ability to handle non-linear relationships and complex data interactions, which are common in 

energy consumption patterns. As an ensemble method, RF also reduces the risk of overfitting and 

is robust in dealing with missing data. Linear models, while simpler and more interpretable, were 

evaluated to provide a baseline for comparison, although they failed to capture the non-linear 

complexities of the energy consumption data effectively. Support Vector Regression (SVR) was 

included for its ability to handle high-dimensional spaces and its success in other regression tasks, 

but it struggled with the non-linearities in the dataset, leading to poorer performance than RF. 

Other models were considered to benchmark the performance of more sophisticated algorithms. 

Furthermore, Neural Networks were also evaluated, as they are known for their powerful 

capability to model complex, non-linear relationships. However, Neural Networks might not be 

required for the model because the model might not be as complex to handle using Neural 

Networks. 

The main issues in energy consumption analysis are examined in this study, emphasizing anomaly 



 
 
International Journal of Energy Efficiency Engineering (IJEEE)  
Volume 1, Issue 1 (May 2025), Pages 5-26 
 
 

Page 8 
 

detection, model performance, and feature relevance. It seeks to pinpoint the most significant 

variables that affect energy use, such as weather and seasonal trends. It also compares several 

machine learning models to see which provides the optimum accuracy and interpretability 

balance. Identifying anomalies or outliers in odd usage patterns is another crucial component of 

improving energy management. By tackling these issues, the research paper aims to show how 

machine learning can be used in the real world and offer practical insights for enhancing building 

operations’ energy efficiency. 

II.  LITERATURE REVIEW 

In intelligent energy systems, the quick development of artificial intelligence (AI) algorithms has 

created new chances to optimize energy use and encourage sustainable habits. To support load 

balancing, demand side management, and power grid stability optimization calculations, artificial 

intelligence algorithms can examine user behavior and energy usage trends. In the end, these 

algorithms can offer energy-saving measures. To solve the increasing issues of energy 

consumption, environmental sustainability, and resource efficiency, energy efficiency is 

essential. 

The primary goal of univariate regression is to examine the relationship between a dependent 

variable and a single independent variable, establishing a linear equation that represents the 

connection between the two models; multilinear Regression is the term for regression models that 

have one dependent variable and multiple independent variables. Regression analysis is a 

statistical technique for predicting the relationship between variables with reason and result 

relationships [4]. 

Additionally, this can be used as a basis for future studies on the estimation and forecasting of 

energy use in the food and beverage business, with the results and conclusions being used in a 

multi-criteria decision-making process, such as the PROMETHEE model, to forecast the behavior 

of that industry [5]. To classify data (classification) and forecast continuous values (Regression), 

the Random Forest regression technique first creates several datasets by resampling the original 

data. As shown in [6], this sampling strategy is commonly used for both small and big population 

selection. A decision tree is built for these resampled datasets without pruning. One important 

characteristic of random forests is that, instead of assessing every predictor, a random subset of 
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the available predictor variables is considered for the optimum split at each decision-making step. 

After this set of trees is created, the forecasts from each tree are combined to create predictions 

on fresh data. For regression tasks, this aggregation entails averaging the predictions, and for 

classification problems, a majority vote. Standard bagging can be seen as a special case of 

Random Forests where all predictors are considered at each split rather than a random subset [7]. 

Regression techniques like Lasso and Ridge work well for managing multicollinearity and 

avoiding overfitting. Multicollinearity and automated model selection benefit from Lasso (L1 

regularization), which encourages simpler models with fewer parameters. Ridge regression (L2 

regularization), especially well-suited for multicollinearity, lowers estimate bias and variability. 

The nature of the issue and the intended model attributes determine which of the Lasso and Ridge 

regression is best. Ridge regression works well when every feature affects performance, but Lasso 

is best suited for many characteristics with few significant ones. These methods help improve 

model performance and interpretability, which helps researchers create dependable regression 

models for various uses. When trying to figure out how best to use each element in a statistical 

model to predict or comprehend the response variable, multicollinearity can provide skewed or 

misleading findings [8]. Additionally, it may lead to less dependable results and broader 

confidence ranges. The particulars of the problem and the intended model attributes determine 

which of Lasso and Ridge regression is best. Lasso works well when there are many 

characteristics, but only a few are significant. Ridge regression, on the other hand, works well 

when multicollinearity is present and every feature affects the model's performance. Both 

strategies provide strong frameworks for improving models [9]. 

Support Vector Machines (SVM) is a learning method implemented using SVM, which helps 

identify minute patterns in large, complicated data sets. The system uses discriminative 

categorization learning as an example to forecast the classes of previously unknown data. It's 

based on learning machines that apply the inductive concept of structural risk reduction to achieve 

good generalization on a small set of learning patterns. Support Vector Regression (SVR) aims 

to achieve generalized performance by reducing the generalization error bound rather than the 

observed training error [10]. The concept behind Support Vector Regression (SVR) is to compute 

a linear regression function in a high-dimensional feature space, where a nonlinear function maps 

the input data into this space. The approximation of difficult engineering studies, convex 
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quadratic programming, loss function selection, time series and financial (noisy and risky) 

prediction, and other areas have all used SVR. In this study, an attempt has been made to discuss 

the current theory, procedures, new advancements, and applications of SVR [11]. 

Unlabeled observations are categorized using the K-nearest Neighbors (kNN) classifier by 

placing them in the same class as the most comparable labeled samples. Both the training and 

test datasets observational characteristics are gathered [12]. 

The kNN algorithm's diagnostic performance is greatly impacted by the choice of k. Although a 

large k lessens the effect of variation by random error, it also increases the possibility of 

overlooking a subtle but significant pattern. Finding a balance between overfitting and 

underfitting is crucial when selecting a k value [13]. 

Neural networks are inspired by the brain's structure for information processing. While they do 

not perfectly replicate the brain's functions, they are scientifically motivated models. Due to their 

ability to learn from data, neural networks have proven to be highly effective in various 

forecasting and business classification applications [14]. To effectively complete a job, the 

artificial neural network learns by adjusting the weights in the network design. It may 

automatically learn from examples or input-output relationships, or it can learn from existing 

training patterns. Despite their continued remarkable performance on well-known machine 

learning challenges, it has been challenging to prove that neural network models can reason about 

ideas [15] [16]. Artificial intelligence (AI) techniques are applied in many study domains, 

including material strength and properties, healthcare, risk assessment and prediction, soil 

mechanics and characteristics, and building energy consumption [17]. 

 

III. METHODOLOGY 

A. Study Limitations 

This study focuses on a residential facility with a moderate electricity consumption load 

compared to industrial and commercial buildings. One limitation is its geographical scope, as 

the research was conducted on a building in Spain, which may affect the generalizability of the 

findings to other regions with different climatic, economic, or regulatory conditions. 

Additionally, while expanding the study to cover more years and neighboring buildings could 
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provide a broader perspective on energy consumption and optimization, data availability poses 

a significant challenge. Access to long-term and multi-location energy data is often restricted 

due to privacy concerns, measurement inconsistencies, or institutional constraints. Future 

research could benefit from improved data-sharing policies and collaborations to enhance the 

applicability of the findings across diverse locations. 

Moreover, while the study evaluated several machine learning models, including Random 

Forest, linear models, SVR, and Neural Networks, it did not explore time-series models such as 

Long Short-Term Memory (LSTM) networks or ARIMA. These models, which are specifically 

designed to capture sequential dependencies in time-dependent data, could potentially improve 

performance by better modeling the temporal patterns inherent in energy consumption. Future 

research could explore the application of these models to address this limitation and enhance 

predictive accuracy. 

B. Workflow 

Figure 1 shown below illustrates the step-by-step process of predicting building energy 

consumption using regression models. It begins with data collection, where the hourly energy 

consumption and environmental conditions (temperature, humidity, precipitation) are gathered 

for a time span of a year. The next step, data preprocessing, addresses missing values and 

prepares the data for analysis. Feature engineering follows, creating essential temporal variables 

like Hour, Day of Year, and Is Weekend to capture energy usage patterns effectively. After the 

data is processed, various regression models are selected for comparison, including Linear 

Regression, Ridge and Lasso Regression, SVR, KNN, Random Forest, XGBoost, and Neural 

Networks. These models are then trained in the model training step using the preprocessed data. 

Performance is assessed to determine the best model based on evaluation metrics such as MAE 

and R². The final results interpretation and insights stage derives conclusions that help in 

optimizing building energy consumption. 
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Figure 1: Flowchart for finding the best AI model. 

 

Finally, the results are thoroughly discussed and interpreted to identify the best-performing 

model based on various evaluation metrics. This involves comparing model performance across 

different criteria, such as accuracy, precision, recall, and overall prediction reliability. After 

selecting the best model, feature interpretation is introduced as a crucial step to ensure the 

model's alignment with reality and its ability to provide meaningful insights. Feature 

importance techniques, such as SHAP is utilized to assess the contribution of individual features 

to the model's predictions. This step is critical for validating the model’s decisions and ensuring 

that the selected features make logical sense in the context of the problem. Additionally, feature 

interpretation helps in understanding whether the model is capturing the correct relationships 

between input variables and the target variable, ensuring consistency with domain knowledge 

and real-world expectations. 
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C. Dataset 

Using hourly energy usage records for two buildings over the span of 3 years, the "Building 

Energy Consumption Dataset" from Mendeley Data is used in this study [18]. Key features of 

the dataset include the following: weather variables (minimum, maximum, and average 

temperature), precipitation (PRECTOT), humidity (RH2M), and energy consumption (the target 

variable) measured in kWh. Temporal variables include the hour, day of the week, weekend 

indicator, and day of the year. This dataset, which is openly accessible, provides enough 

variation to facilitate the creation and assessment of machine learning models. 

This study investigates many regression models to forecast energy usage, each with its 

advantages. Multiple linear regression is a simple method for modeling linear connections. An 

ensemble technique called Random Forest Regression reduces overfitting and improves 

generalization by mixing many decision trees to increase accuracy and stability. Ridge and Lasso 

Regression maintains predictive strength while avoiding overfitting by introducing 

regularization. Support Vector Regression (SVR) uses support vector machines to deal with 

nonlinear connections. Using the average of the nearest data points in feature space, K-Nearest 

Neighbors (KNN) makes value predictions. Furthermore, Neural Networks offer a more 

sophisticated and adaptable method for identifying intricate patterns in energy usage data. 

Additionally, the performance of each model has been assessed using Mean Absolute Error 

(MAE) and R-squared (R²) metrics, standard measures for regression performance. The process 

details have been assessed through data preprocessing, model building, evaluation, and 

comparison of different machine learning techniques for predicting building energy 

consumption. The models' effectiveness is measured using predictive accuracy and 

interpretability to identify the best approach for energy consumption forecasting. The dataset 

used in this research study consists of hourly energy consumption data from a building, 

providing insights into how energy usage fluctuates across time in response to various internal 

and external factors. The target variable, Energy Consumption (ENERGY), represents the 

energy consumption in kilowatt-hours (kWh) at each hour. Several features related to 

environmental conditions, including temperature, humidity, and precipitation, are also provided. 

Specifically, the dataset includes columns like T2M, T2M_MIN, and T2M_MAX, representing 
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the average, minimum, and maximum temperatures recorded during each hour. These 

temperature features are crucial as they could impact the building's heating and cooling needs. 

RH2M represents the relative humidity, which can also influence energy usage, particularly 

concerning HVAC (heating, ventilation, and air conditioning) operations. 

D. Data Preprocessing 

In addition to environmental variables, the model includes temporal features such as Hour, 

DayOfYear, and IsWeekend to capture the effect of time on energy consumption patterns. The 

Hour feature provides information on the specific time of day, which is essential in 

understanding daily usage patterns, while DayOfYear tracks seasonal variations. IsWeekend 

serves as a binary indicator, reflecting whether the observation falls on a weekend, which may 

have a different energy consumption pattern due to reduced occupancy or different operational 

schedules in the building. This dataset provides a comprehensive foundation for predicting 

energy consumption, combining environmental, temporal, and building-specific factors. 

The first step in preparing the machine learning data was handling missing values. The dataset 

was checked for missing or null entries, which are common in real-world data and can cause 

issues during model training. Any rows containing missing values were removed to ensure that 

only complete records were used. This decision was made based on the fact that missing data 

could introduce bias or reduce the quality of predictions. After removing rows with missing 

values, the dataset became more consistent and ready for further processing. A feature selection 

was conducted to identify the most relevant features for predicting energy consumption. Certain 

features, such as PRECTOT (total precipitation) and RH2M (relative humidity), ALLSKY 

(radiation) were dropped from the dataset after performing feature importance analysis as shown 

in Figure 2 (this is just a sample from the random forest method, but all other feature importance 

show similar results). 
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Figure 2 Feature Importance results using Random Forest 

This step was crucial, as it reduced dimensionality and removed variables that did not 

significantly contribute to the prediction model. By eliminating unnecessary features, the model 

could focus on the variables with the highest predictive power, such as temperature and temporal 

features. Afterward, feature engineering was utilized, where the DATE column was transformed 

into useful time-based features. The original DATE column, which included both the date and 

hour, was split to extract the hour of the day, the day of the year, and a binary feature indicating 

whether the day was a weekend. These temporal features are important because they help capture 

daily, weekly, and seasonal patterns in energy consumption, which are crucial for making 

accurate predictions. Including a weekend indicator, for example, helps the model account for 

potential differences in energy consumption between weekdays and weekends, which can be 

influenced by factors such as occupancy and operational schedules. 

To ensure that all features were comparable, standard scaling was applied for all methods except 

the Min-Max Scaler for the Neural Network. Scaling is particularly important for machine 

learning algorithms sensitive to the magnitude of input features, such as Support Vector 

Regression (SVR) and K-Nearest Neighbors (KNN). The Min-Max Scaler transforms the data 

so that all features are scaled to a range between 0 and 1, making the models less biased toward 

features with larger numeric ranges. This normalization process ensures that the model treats 
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each feature equally, preventing one feature from dominating the learning process. In addition, 

a train-test split has been implemented to evaluate the model's performance. The data was 

divided into training and testing sets, with 80% of the data used for training and the remaining 

20% reserved for testing. This approach allows for proper validation and helps prevent 

overfitting, ensuring the model can generalize well to unseen data. 

 

IV. RESULTS AND DISCUSSION 

This study evaluates several machine learning models based on their performance in predicting 

energy consumption, measured by Mean Absolute Error (MAE), Mean Squared Error (MSE), 

and R-squared (R²). Table 1 summarizes the performance of each method used in this project. 

Table 1  Results of the various regression models. 

MODEL MEAN 

ABSOLUTE 

ERROR (MAE) 

MEAN 

SQUARED 

ERROR (MSE) 

R2 

LINEAR 

REGRESSION 

50.08 4216.94 0.197 

RANDOM FOREST 8.33 242.08 0.954 

XGBOOST 17.14 700.26 0.867 

RIDGE 

REGRESSION 

49.31 4101.75 0.219 

LASSO 

REGRESSION 

49.97 4183.10 0.203 

SVR 35.18 2882.00 0.451 

KNN 18.38 910.94 0.826 

NEURAL NETWORK 18.64 806.03 0.85 
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The regression model results reveal significant differences in predictive performance for energy 

consumption. Among the evaluated models, Random Forest emerges as the best performer, 

achieving the lowest Mean Absolute Error (MAE) of 8.33, a Mean Squared Error (MSE) of 

242.08, and the highest R-squared (R²) of 0.954. This indicates that the model explains 

approximately 95.4% of the variance in the data, as shown in Figure 3. 

 

Figure 3 Predicted Energy consumption vs actual 

XGBoost also demonstrated strong predictive accuracy, achieving an MAE of 17.14, MSE of 

700.26, and an R² of 0.867, though it was slightly less effective than Random Forest. K-Nearest 

Neighbors (KNN) followed with an MAE of 18.38, MSE of 910.94, and an R² of 0.826, 

indicating good performance but higher error rates compared to tree-based models. In contrast, 

Support Vector Regression (SVR) had a significantly higher MAE of 35.18, MSE of 2882.00, 

and a relatively low R² of 0.451, suggesting it was less effective at capturing underlying patterns 

in the data. The Neural Network model trained smoothly without overfitting, as shown in Figure 

4. It produced decent results with an MAE of 18.64, MSE of 806.03, and an R² of 0.85, 

outperforming SVR but falling behind Random Forest and XGBoost in predictive accuracy. 
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Figure 4 Training process of the neural network 

However, further tuning and testing can be done on the Neural Network. As discussed 

previously a feed forward Neural Network consists of and input and out layer and hidden 

layers in between, where each layer consists of certain number of neurons. The learning 

algorithm used was Adaptive Moment Estimation optimizer (Adam) is an optimization 

algorithm that combines the advantages of momentum and adaptive learning rates. It computes 

individual learning rates for each parameter using estimates of the first and second moments of 

the gradients, enabling efficient and robust training of deep learning models. However, the 

learning rate can be changed and tuned. Different structures of number of layers, neurons and 

learning rates were tested and evaluated. The results of this tuning can be shown in Table 1.  

Table 1 performance results for different Neural Networks 

Layers-

neurons 

LEARNING 

RATE 

MEAN 

ABSOLUTE 

ERROR 

(MAE) 

MEAN 

SQUARED 

ERROR 

(MSE) 

R2 

64 0.0010 27.860467 1739.491082 0.668633 

128-64 0.0010 24.186951 1404.341130 0.732478 

128-64-32 0.0010 21.331557 1061.582213 0.797773 
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64 0.0100 27.398675 1590.457467 0.697024 

128-64 0.0100 19.685038 903.640517 0.827860 

128-64-32 0.0100 18.639559 806.029579 0.846454 

64 0.0001 35.197151 2326.152578 0.556877 

128-64 0.0001 26.667670 1688.658357 0.678317 

128-64-32 0.0001 25.715233 1539.650502 0.706702 

It can be noted that the maximum achieved R2 value achieved was approximately 0.84 which 

enhanced the original Neural Networks performance but still slightly under performing the 

random forest method.  

Ridge and Lasso Regression exhibited poor performance, with high MAE values (49.31 and 

49.97, respectively) and low R² scores (0.219 for Ridge and 0.203 for Lasso), likely due to their 

inability to capture the complexities in the data. Similarly, Linear Regression performed poorly, 

with an MAE of 50.08, MSE of 4216.94, and an R² of 0.197, suggesting that the linear 

assumptions do not hold for this problem. Figure 5 illustrates the performance of the Ridge 

regression method. 

 

Figure 5 Ridge regression performance 
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The results suggest that tree-based models, particularly Random Forest, are the most suitable for 

this energy consumption prediction task. In contrast, linear models and Support Vector 

Regression (SVR) struggle to capture the data's complexities effectively. For building managers, 

these findings highlight the potential for implementing more advanced machine learning models, 

like Random Forest, to improve the accuracy of energy consumption forecasts. Furthermore, 

feature interpretability is done using SHapley Additive exPlanations (SHAP) [19]. SHAP is a 

machine learning interpretability method based on game theory, designed to explain individual 

predictions of machine learning models. It provides a unified approach to understanding model 

outputs by calculating the contribution of each feature to a particular prediction. The SHAP 

summary plot (Figure 6) shows how different features impact energy consumption predictions. 

"Hour" influences energy use significantly, with higher values in the evening leading to 

increased consumption, while early hours reduce it. "IsWeekend" indicates higher energy use 

on weekends compared to weekdays. "T2M" (temperature) has a mixed effect, with higher 

temperatures slightly increasing energy consumption, likely due to cooling needs. "DayOfYear" 

shows minimal impact on energy use, with no clear trend. Overall, the plot reveals the key 

factors that drive energy consumption based on time of day, weekends, temperature, and 

seasonal variations. 

 

Figure 6 SHAP summary plot 
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Such predictions can inform better decision-making in energy optimization, leading to cost 

savings and more efficient resource management. Building managers can leverage these insights 

to implement strategies that reduce energy consumption, optimize heating and cooling 

schedules, and ultimately lower operational costs. Future research could explore how these 

models could be integrated into real-time energy management systems. 

 

V. CONCLUSIONS 

This study aimed to predict building energy consumption using various machine learning 

regression models. The dataset included hourly energy consumption data along with weather 

and temporal features. After preprocessing—handling missing values, feature selection, and 

scaling—several regression models were applied, including Linear Regression, Random Forest, 

Ridge and Lasso Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN) 

and feedforward Artificial Neural Networks (ANN). Model performance was evaluated using 

Mean Absolute Error (MAE) and R-squared (R²) to assess accuracy and generalization. Among 

the models, Random Forest Regression achieved the best performance, with an MAE of 8.33, 

MSE of 242.08, and an R² of 0.954, indicating its strong predictive power. XGBoost followed 

closely, with an MAE of 17.14 and an R² of 0.867. Ridge Regression also showed unacceptable 

accuracy (MAE: 49.31, R²: 0.219), while simpler models like Linear Regression (MAE: 50.08, 

R²: 0.197) struggled with the dataset’s complexity. SVR performed poorly as well, with an MAE 

of 35.18 and an R² of 0.451, demonstrating its limitations in capturing energy consumption 

patterns. Furthermore, ANN performed really well where originally they performed slightly 

worse than KNN however after tuning and optimizing hyper parameters the neural network was 

able to outperform KNN but still slightly underperforms XGBoost and random forest. Overall, 

the results highlight the effectiveness of ensemble methods and regularized models in handling 

complex relationships, while traditional linear approaches were less effective for this task. 

The findings of this study have significant implications for the field of energy consumption 

prediction. By comparing different machine learning models, the study highlights the 

importance of using ensemble methods and regularized models, which are more adept at 

handling complex, non-linear relationships in energy data. The strong performance of Random 
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Forest and XGBoost suggests that these models can be valuable tools for energy forecasting, 

potentially assisting building managers and policymakers in making more accurate energy usage 

predictions and decisions. Additionally, the study provides insights into model selection, guiding 

future work in energy efficiency, optimization, and demand forecasting, ultimately contributing 

to more sustainable energy practices and better resource management. 

 

VI.  EXTENSIVE STUDIES 

Although this study achieved promising results, several avenues for improvement and further 

exploration exist. First, including more granular or diverse data, such as building-specific 

features (e.g., floor area, insulation type, occupancy schedules) and additional weather 

parameters (e.g., wind speed, cloud cover), could enhance model performance. Moreover, time-

series forecasting techniques, such as ARIMA or LSTM (Long Short-Term Memory) networks, 

could be explored to better capture the temporal dynamics and sequential dependencies in energy 

consumption. 

Additionally, feature engineering can be expanded by exploring advanced techniques such as 

creating interaction terms between weather and temporal features or incorporating external 

factors like holidays and special events. Hyperparameter optimization and cross-validation can 

also be further refined to improve the robustness of the models. 
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Abstract 

Polymer nanocomposites, featuring reinforcing particles smaller than 100 nm, exhibit superior 

mechanical properties compared to conventional composites. This study investigates the effect of 

nanoparticle size and weight fraction on the Young’s modulus and tensile strength of epoxy-silica 

nanocomposites. To evaluate their mechanical behavior, epoxy-silica samples were prepared using 

nanoparticles sized 15 nm, 20 nm, and 80 nm at 3% and 5% weight fractions. Ultimate stress, yield 

stress (0.2%), maximum strain, and Young’s modulus were measured. Results showed that adding 

silica nanoparticles enhanced the ultimate tensile stress, yield stress, and Young’s modulus of pure 

epoxy. Notably, nanocomposites with 80 nm particles at 3% loading displayed the highest strain. 

At 5% loading, 20 nm nanoparticles exhibited the highest tensile strength and stiffness among the 

tested samples, while 15 nm particles showed comparatively lower improvements, likely due to 

increased agglomeration. Additionally, a general trend of increased stiffness was observed with 

smaller particle sizes, although deviations occurred due to dispersion and porosity effects. 
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epoxy.  

I. INTRODUCTION 

A. Nanocomposites 

Nanocomposites are advanced materials that integrate nanoscale reinforcements into a matrix 

material (polymer, metal, or ceramics) to achieve synergistic mechanical, thermal, electrical, and 

optical properties superior to conventional composites. These multi-phase nanomaterials have at 

least one dimension in the nanometer scale (10-9m). The nanoparticles are often in the form of 

nanofibers, nanotubes, nanoclays, or spherical nanoparticles. A prominent area of research in 

nanotechnology is polymer nanocomposites (PNCs). The major advantage of PNCs is improved 

mechanical properties with small filler loading levels. An important thermosetting polymer used 

in nanocomposites is epoxy resin. It was selected for this research due to its broad applicability 

and combination of mechanical strength, chemical durability, adhesion, and thermal performance. 

Epoxy nanocomposites are multifunctional materials with the potential for lower-cost, high-

performance applications in adhesives, coatings, electronics, automotive, aerospace, and marine 

industries, where lightweight structural components with optimal mechanical properties are 

preferred [1] [2] [3] [4].  

B. Effects of Filler Size and Loading  

Generally, the large surface-area-to-volume ratio of nanoparticles increases the available 

interfacial contact within nanocomposites, enabling effective load transfer between the filler and 

polymer matrix and ultimately enhancing the mechanical strength [3]. Particle–particle 

interactions also significantly influence nanocomposite mechanical performance. Unlike particle-

matrix interaction, which improves mechanical strength, particle-particle interaction has an 

undesirable effect. Interparticle attraction and repulsion, governed by van der Waals and 

electrostatic forces, can lead to agglomeration or clustering of nanoparticles. The dense and strong 

particle collectives are called aggregation, whereas agglomeration refers to looser, larger structures 

that their mechanical forces can easily break. High loadings of large nanoparticles produce 

aggregation and weak interfacial properties, negatively impacting tensile strength [5]. Interparticle 

forces can be tuned through variations in particle size, concentration (wt.% or vol.%), and surface 



International Journal of Energy Efficiency Engineering (IJEEE)  
Volume 1, Issue 1 (May 2025), pages 27-47 
 

Page 29 
 

treatments. Research optimizing nanocomposite performance has focused on tailoring particle 

dimensions and filler content, including size, weight, and volume fractions, in recent years [5] [6] 

[7] [8] [9] [10].  

Fu et al. comprehensively examined how particle dimensions, loading levels, and filler–matrix 

bonding influence nanocomposite mechanical behavior [11]. They concluded that each of the three 

factors plays an important role in nanocomposites’ strength and toughness properties; higher 

particle loadings were found to improve stiffness significantly, and for a given volume fraction, 

the strength increased with decreasing particle size [11]. Increasing nanoparticles’ weight fraction 

has been reported to improve Young’s modulus in nanocomposites significantly. Singh et al. 

reported a maximum increase in elastic modulus with 4 wt.% SiO2 nanoparticles dispersion in an 

epoxy matrix [12]. Filippov et al. reported a 25% increase in the modulus of elasticity when the 

content of silicon dioxide nanoparticles in the epoxy resin was increased to 5 wt.% [13]. Soni et 

al. showed that adding 0.5 wt.% of SiO2 nanoparticles,  improved the elastic modulus, ultimate 

tensile strength, and failure strain of the SiO2 epoxy nanocomposites by 18%, 15%, and 33%, 

respectively [14]. Studies have also shown that the interfacial bonding strength and thickness 

determine the mechanical properties of nanocomposites [15]. The surface modification of silica 

nanoparticles positively impacts the interfacial region of epoxy nanocomposites. Battistella et al. 

found that in silica-epoxy nanocomposites, the fracture toughness significantly increased by 54% 

by adding only 0.5 vol% of surface-modified fumed silica [16]. Islam et al. developed empirical 

models to predict the mechanical performance of silica–epoxy composites across different particle 

sizes and loadings, as shown in Table 1 [17].  

In Table 1, E is Young’s modulus, σ is tensile stress, SSA is specific surface area in m2/kg, g is 

gravitational acceleration in m/s2, A is the average surface area of nanoparticle in m2, W is the 

average weight of nanoparticles in N, wt., and vol are weight and volume fractions [0 ≤ wt ≤

100, 0 ≤ vol ≤ 100], 𝜎𝑐𝑦 is the compressive yield stress, and Ec is the compressive modulus, 

[17]. 
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Table 1: Suggested expressions to estimate the mechanical behavior of silica-epoxy 

nanocomposites at different weight fractions of nanoparticles [17]. 

Nanocomposite Suggested equation Ranges of applications 

Nanoparticle 

dimension 

wt.% 

or 

vol.% 

Remark 

Silica-epoxy 
𝐸 = 3.639 × 104

𝑊

𝐴
𝑤𝑡0.04 

[in GPa] 

8-50nm 1-40 

(wt.%) 

Sol-gel 

processing 

Rubbery silica 

epoxy 

mesocomposite 

𝐸 =
𝑔

𝑆𝑆𝐴
288 × 100.053𝑤𝑡 

[in GPa] 

10-100nm 2-10 

(Wt.%) 

Nanoparticle’s 

pore size: 4-21 

nm 

Silica-epoxy 𝜎 =
𝑤

𝐴
106 × 𝑤𝑡−0.069 

[in MPa] 

8-50nm 1-40 

(wt.%) 

Sol-gel 

processing 

Rubbery silica 

epoxy 

mesocomposite 

σ =
g

SSA
55.8 × 100.04wt 

[in GPa] 

10-100nm 2-10 

(wt. %) 

Nanoparticle’s 

pore size: 4-21 

nm 

Epoxy-silica-

rubber 

σcy = 56.8 × 10−0.004vol 

[in MPa] 

20nm, 80nm 
 

0-6.4 

(vol.%) 

CTBN 

processing 

Epoxy-silica-

rubber 

Ec  = 1.53 × 100.001vol 

[in GPa] 

20nm, 80nm 
 

0-6.4 

(vol.%) 

CTBN 

processing 

 

C. Health Concerns and Safety Issues 

Nanotechnology has significant environmental, health, and safety (EHS) concerns, particularly in 

product application and safe utilization of nanoparticles. Nanoparticles can be combustible and 

initiate catalytic reactions, so precautions should be taken to reduce exposure during processing, 

maintenance, machining, sanding, and drilling processes. Toxicological responses are influenced 

by particle size, geometry, surface area, and surface reactivity. Prediction of health risks depends 

on routes of exposure, translocation, toxicity, duration, and immune system effects. Control of 
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airborne exposure can be achieved using personal protective equipment and risk management 

programs. Sub-100 nm diameter nanotechnologies have been found to affect the human heart and 

lung, and agglomerates of 20nm titania (TiO2) nanoparticles and pigment grade TiO2 have a great 

impact on animal lungs due to their nanoscale nature [18]. All nanoparticle handling was conducted 

in a designated area with controlled ventilation to minimize exposure risks. Researchers wore 

appropriate personal protective equipment, including N95 respirators, nitrile gloves, lab coats, and 

safety goggles. Nanoparticle containers were only opened within a ventilated enclosure to prevent 

aerosolization. All waste materials containing nanoparticles were collected in sealed containers 

and disposed of according to institutional hazardous waste protocols. 

Most previous studies have examined the effects of particle weight fraction, volume fraction, or 

surface modification on the mechanical behavior of nanocomposites. Consequently, the interaction 

between particle size and weight fraction on mechanical performance remains insufficiently 

explored, particularly under controlled experimental conditions. Understanding the synergistic and 

individual effects of particle size and weight fraction is essential. This requires controlling all other 

parameters while varying only one variable, such as maintaining a constant weight fraction while 

altering particle size. Such an approach helps isolate the effects of particle size from other variables 

and supports the interpretation of trends in strength and stiffness. Additionally, it helps identify 

trends in mechanical behavior associated with different nanoparticle sizes and loading levels while 

acknowledging the limitations of the selected size resolution. This study utilized silica 

nanoparticles of different sizes (15 nm, 20 nm, and 80 nm) as nano-fillers. The weight fraction was 

kept constant at 3% and 5% to isolate the effect of particle size. The mechanical properties of the 

prepared nanocomposites were measured and compared to those of pure epoxy specimens. 

The key contributions and novelty of this study are: 

• Introduces an experimental design to assess the combined effect of nanoparticle size (15, 

20, 80 nm) and weight fraction (3%, 5%) on tensile properties of silica-epoxy 

nanocomposites. 

• Performs indirect porosity analysis and SEM imaging to explain variations in mechanical 

behavior beyond raw data. 

• Uses practical loading levels and commercially available silica nanoparticle sizes, 

reflecting real-world constraints in manufacturing and design. 
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• Acknowledges the limited resolution in particle sizing and proposes this as a future 

research direction to refine the identification of optimal nanoparticle dimensions. 

II. EXPERIMENTS 

A. Materials and Preparation 

Fibre Glast Developments Corporation supplied 2000 epoxy resin and 2120 hardener (with a 3 to 

1 mixing ratio). The silica (Silicon Oxide) nanoparticle, supplied by Nanostructured and 

Amorphous Materials Inc., was used as nanofillers. Silica (SiO2) nanoparticles of three different 

sizes (particle diameters of 15, 20, and 80 nm) were selected for this research. All silica 

nanoparticles are spherical and white in color. All composite samples were made with a 5% and 

3% nanoparticle weight fraction. 

1. Making Samples 

To make the pure epoxy samples, a water bath indirectly heated the resin to decrease its viscosity 

using the same condition used for composites. Then, the curing agent was added and stirred rapidly 

for 5 minutes using a magnetic stirrer and a hand. The mixture was poured into the mold and kept 

at room temperature for one day to cure. 

The silica-epoxy nanocomposites were made by mixing epoxy resin with silica nanoparticles. The 

epoxy resin of volume 90ml (101.26 g) was poured into a small beaker while the beaker was placed 

inside a larger beaker filled with water. The large beaker was placed over a hot plate with a 

magnetic stirrer at 90°C and 1150 rpm for 30 minutes to decrease the resin’s viscosity and release 

the bubbles. An amount of 6.96 g of silica nanoparticles (5% weight fraction of the total weight of 

the epoxy-hardener-silica mixture) was placed into a small beaker on a hot plate at 110°C for 30 

minutes to evaporate the moisture from the particle surfaces, as silica is hydrophilic. Then, epoxy 

resin and silica were mixed, placed over a magnetic stirrer at 1150 rpm, and stirred rapidly for 5 

minutes. Afterward, 30ml (30.9 g) of hardener was added to the mixture and then stirred using 

both-magnetic stirrer and hand for 5 minutes. After spraying a mold release agent, the mixture was 

poured into an open aluminum mold of size 162𝑚𝑚 × 135𝑚𝑚 × 4𝑚𝑚. 

The mold was placed on a hot plate for 60 minutes at 60°C and 1150 rpm using a magnetic stirrer 

and 30 minutes at 40°C. After heating and stirring, the mold was kept at room temperature for 5 

hours to cure partially. The composite, partially cured at this stage, allowed a little bending, making 
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it easier to retrieve from the mold. The retrieved composite was maintained at room temperature 

for another 6 hours to cure completely. 

Table 2 lists four samples with their material codes, nanoparticle weight fractions, and particle 

diameters. In the material code, ‘E’ denotes pure epoxy resin, and ‘S’ denotes silica nanoparticle; 

the next two digits after ‘S’ represent the diameter of the nanoparticle (in nm), and the third number 

after ‘S’ denotes the weight percentage (%) of nanoparticles in the matrix. For example, ES155 

means epoxy-silica nanocomposites with a 5% nanoparticle size of 15nm. 

Table 2: Material codes, particle sizes (nm), and weight fractions of nanoparticles in each 

nanocomposite sample. 

Material code Particle diameter (nm) Nanoparticle weight fraction (%) 

E - - 

ES155 15 5 

ES205 20 5 

ES805 80 5 

ES153 15 3 

ES203 20 3 

ES803 80 3 

 

2. Cutting and specimen preparation 

The load test specimens (also known as test coupons or dog bones) were prepared by cutting the 

composite sheets to the standard size using a cutting machine (Microlux band saw) having a band 

saw with a diamond-tipped blade. The standard ASTM D638 [19], was used to size the samples 

and test the tensile properties.  



International Journal of Energy Efficiency Engineering (IJEEE)  
Volume 1, Issue 1 (May 2025), pages 27-47 
 

Page 34 
 

 

Figure 1: Prepared epoxy-silica nanocomposite (ES153) dog-bone specimens prior to tensile 

testing, conforming to ASTM D638 standard dimensions. 

B. Mechanical Behavior  

The pure epoxy and the silica-epoxy composites were tested for their mechanical (tensile) behavior 

according to ASTM D638 [19], Figure 2. Five specimens of pure epoxy and each composite type 

were prepared, considering the dimensions required by the standard. The specimens were 

conditioned for one hour at a temperature of 20±1ºC and a relative humidity of 65±2% before 

testing. The tests were performed using an Instron 5500R tensile testing machine. The crosshead 

speed of 1mm/min was chosen for tests, and all experiments were performed at 20±1ºC and 65±2% 

relative humidity. Measurements were ultimate tensile stress, maximum strain, Young’s modulus, and 

yield stress (0.2% offset). The broken samples were used for porosity analysis (indirect porosity 

measurements).  Some broken parts were also used to observe particle agglomerations using an SEM of 

the Topcon model ABT-32. 
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Figure 2: An experimental setup for tensile testing using the Instron 5500R machine was 

conducted in accordance with ASTM D638 procedures. 

C. Estimation of Porosity 

A factor that can significantly affect the performance of nanocomposites is the existence of voids 

or bubbles. The voids act as a defect to the composites, causing the composites to yield unexpected 

results. As a result, the theoretical density of porous composites is greater than the actual density. 

A decrease of two to ten percent in the mechanical properties has been reported with every one 

percent increase in the void content or porosity [20].  

For porous composites, the volume fraction of voids or porosity (Ɛ) is defined as: 

Ɛ = 𝑉𝑜/𝑉𝑐                                                                                (1) 

where, Vc  is the volume of the composite, and Vo is the volume of the voids [20]. The total 

volume of the composite can be written as:  

𝑉𝑐  =  𝑉𝑓  +  𝑉𝑚  + 𝑉𝑜                                                                (2) 

where, Vf  is volume of the fillers (i.e., silica nanoparticles), and Vm is the volume of the matrix 

(epoxy resin and curing agent) [20]. The experimental density of a composite (ρce) is defined as:  

𝜌𝑐𝑒 =
𝑚𝑐

𝑉𝑐
                                                                                (3) 

where, 𝑚𝑐 is the mass of composite [20]. The theoretical density (ρct) [20], of a composite can be 

written as: 

𝜌𝑐𝑡  =
𝑚𝑐

𝑉𝑓 + 𝑉𝑚
                                                                         (4) 
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Upon replacing Vo from Eq. (2) into Eq. (1) and considering Eqs. (3) and (4), the following 

expression is derived for the porosity: 

Ɛ = 1 −
𝜌𝑐𝑒

𝜌𝑐𝑡
                                                                         (5) 

However, the theoretical density is related to densities of filler and matrix through the following 

expression [20],: 

𝜌𝑐𝑡=𝜌𝑓𝑣𝑓+ 𝜌𝑚 (1-  𝑣𝑓)                                                            (6)                                                               

where, 𝜌𝑓 is the density of filler, 𝜌𝑚 is the density of the matrix, and 𝑣𝑓 is the volume fraction of 

the filler in the composite, which can be found using the following equation: 

𝑣𝑓  =

𝑚𝑓

𝜌𝑓

(
𝑚𝑓

𝜌𝑓
+

𝑚𝑐 −𝑚𝑓

𝜌𝑚
)

                                                                      (7)   

where mf  is the mass of filler in the composite [20]. To find the actual or experimental density, the 

following equation was used:  

 𝜌𝑐𝑒 =
𝜌𝑤𝑚𝑐

(𝑚𝑐−𝑚𝑐𝑤)
                                                                              (8) 

where, 𝑚𝑐𝑤 is the mass of composite inside water and 𝜌𝑤 is density of water [20]. 

D. Particle Dispersion 

The degree of particle dispersion in a polymer nanocomposite is an important factor affecting the 

composite’s performance. Uniformly distributed nanoparticles are necessary to get an efficiently 

reinforced polymer nanocomposite. The Scanning Electron Microscope (SEM) can be used to 

study particle distribution and aggregation in a nanocomposite. SEM images in both higher and 

lower resolution can be used to analyze the microstructure of the composite: low resolution for 

studying clusters and high resolution for studying agglomeration or particle dispersion. The 

specimens were dipped into liquid nitrogen and torn apart to observe surface morphology. A gold 

sputter coating with a pressure of 0.15 Torr and voltage of 1.4 kV was maintained for five minutes 

to prepare samples for observation.  
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III. RESULTS AND DISCUSSION 

A. Porosity 

The theoretical densities of the nanocomposite samples were estimated using the actual densities 

of all the six types of nanocomposites. Using Eq. (5), the indirectly measured porosities were found 

to be 3.39%, 1.68%, and 1.495% for nanocomposites with 15nm, 20nm, and 80nm nanoparticles, 

respectively, while using a 5% weight fraction of nanoparticles. The porosities were 1.7%, 1.36%, 

and 1.16% for nanocomposites with 15nm, 20nm, and 80nm nanoparticles, respectively, when the 

nanoparticle weight fraction was 3%. Table 3 shows the indirectly measured porosities of different 

epoxy-silica nanocomposites with 95% confidence intervals. Figure 3 shows that porosity 

decreases as nanoparticle size increases. It was also observed that nanocomposites with higher 

particle loading (wt. %) show higher porosity. These experiments generally showed an average 

porosity of 1.3% and 3.3% for silica-epoxy nanocomposites.  

Table 3: Indirect measured mean porosities of epoxy-silica nanocomposites with 95% confidence 

intervals 

Material code Porosity (%) 

ES155 3.37 ± 0.308 

ES205 1.68 ± 0.135 

ES805 1.49 ± 0.189 

ES153 1.71 ± 0.256 

ES203 1.36 ± 0.111 

ES803 1.16 ± 0.16 
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Figure 3: Indirect mean porosity measurement results with 95% confidence intervals 

B. Micrographs of Nanocomposite 

Particle distribution and aggregation in the nanocomposite were evaluated using an SEM analysis 

of fractured surfaces. Figures 4 and 5 show SEM images of different epoxy-silica nanocomposites. 

SEM micrographs show small clusters of nanoparticles covered by a thin polymer shell (interphase 

layer). Compared to the actual diameter of nanoparticles, the large particle diameter in these 

micrographs supports the cluster structure’s formation. 

All the SEM images showed a moderate degree of particle cluster dispersion with few white spots, 

which are nanoparticle clusters. Composite samples with 5% loading of 20 nm particles showed 

more pronounced clustering than the 15 nm samples, possibly due to differences in dispersion 

energy and particle surface behavior. Figure 4 shows low-resolution SEM images of epoxy-silica 

composites with 5% loadings of 15nm, 20nm, and 80nm nanoparticles with a magnification level 

of ×10,000. Composite samples with 5% loading of 20nm nanoparticles showed particle clusters 

bigger than those observed in the 15nm nanocomposite samples. Composite samples with 5% 

loading of 80nm nanoparticles show few river markings (related to the initiation of matrix cracks 

that coalescence into larger cracks, indicating the direction of propagation) and some areas with a 

moderate degree of particle cluster dispersion. There are also some areas with low percentages of 

nanoparticles, which can lead to unpredictable results in tensile behavior. 
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Figures 5 show SEM images of nanocomposites with a 3% weight fraction of silica nanoparticles. 

Figure 5a shows the composite sample with 20nm nanoparticles. There is a moderate degree of 

particle dispersion with few particle clusters and some smooth areas surrounded by river markings. 

Figure 5b shows the composite sample with 80nm nanoparticles. The river markings and smooth 

areas in the case of both composite samples with 3% weight fraction silica nanoparticles indicate 

areas of polymer matrix with a lower percentage of nanoparticles than its surrounding areas. The 

SEM images of composite samples with 3% loading show more river markings and smooth areas 

than those with 5% loading. 

   

(a) (b) (c) 

Figure 4: SEM images with a magnification level of ×10,000 of the surface of epoxy-silica 

nanocomposite filled with various silica nanoparticle diameters using 5% loading: (a) 15 nm, (b) 

20 nm, and (c) 80 nm. Arrows indicate the formation of small clusters of silica nanoparticles. 

  

(a) (b) 

Figure 5: SEM images with a magnification level of ×10,000 of the surface of epoxy-silica 

nanocomposite filled with various silica nanoparticle diameters using 3% loading: (a) 20 nm and 

(b) 80 nm. Arrows indicate the formation of small clusters of silica nanoparticles. 



International Journal of Energy Efficiency Engineering (IJEEE)  
Volume 1, Issue 1 (May 2025), pages 27-47 
 

Page 40 
 

C. Tensile Tests 

Pure epoxy and epoxy/silica nanocomposites were tested. The mean values of ultimate tensile 

stress, yield stress (0.2% offset), maximum strain, Young’s modulus, and 95% confidence levels 

are illustrated in Figures 6 to 9. It can be concluded that ultimate strength, yield stress (0.2% 

offset), and Young’s modulus of pure epoxy have improved after adding silica nanoparticles. 

Whenever a load is applied to the nanocomposite, it is transferred through the matrix to the 

nanoparticles, which have higher strength than the epoxy. Therefore, the addition of nano-silica 

increases the strength of the nanocomposite. The mean values of tensile properties and their 95% 

confidence intervals are summarized in Table 4.  

The nanocomposite’s gradual improvement in stiffness (Young’s modulus) and strength (both 

ultimate tensile stress and yield stress) as the silica nanoparticle’s size decreases is clearly 

distinguishable. A similar trend is also found when particle loading increases from 3% to 5%. 

(Figures 4 and 5). These mechanical property improvements can be attributed to enhanced 

interfacial adhesion and effective stress transfer between the silica nanoparticles and the epoxy 

matrix. In particular, the 20 nm particles provide sufficient interaction with the matrix without 

severe agglomeration in smaller 15 nm particles. Conversely, excessive porosity and clustering in 

the 15 nm and high-loading samples likely reduced their reinforcement efficiency, explaining the 

lower-than-expected tensile strength in some configurations. 

Figures 6 and 7 show the ultimate tensile stress and Young’s modules of nanocomposite. The 

Young’s modulus of the nanocomposite sample with 80 nm nanoparticles with a 3% weight 

fraction was less than pure epoxy. Also, the pure epoxy sample had the highest ultimate strain. 

This unexpected result can be explained by the SEM images of a nanocomposite sample with 3% 

loading using an 80nm particle that showed a higher degree of unreinforced smooth areas and 

clusters. The reduction in strain with smaller particle sizes and higher loadings can be attributed to 

increased matrix rigidity and reduced ductility due to particle reinforcement. Nanoparticles restrict 

polymer chain mobility, reducing the material’s deformability. However, the 80 nm particles at 3% 

loading may have acted more like micro-fillers, causing less interference with the polymer network 

and retaining more ductility. This explains the higher strain observed in these samples compared 

to smaller, more tightly interacting particles. (see Figure 3b). Overall, the mechanical behavior of 
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the nanocomposites is primarily influenced by nanoparticle size, dispersion quality, and porosity, 

as evidenced by SEM and tensile results. 

Table 4: Tensile properties of pure epoxy and epoxy-silica nanocomposite (Data are mean value 

± 95% confidence level). 

Material 

code 

Ultimate tensile 

stress (MPa) 

Yield Stress (0.2% 

offset) (MPa) 

Ultimate 

Strain (%) 

Young’s modulus 

(GPa) 

E 34.236 ±3.53 13.138 ±0.83 2.3 ±0.31 1.38 ±0.05 

ES155 41.19 ±1.96 23.896 ±2 2.30 ±0.24 1.55± 0.03 

ES205 38.99 ±3.54 22.68 ±2.11 2.55 ±0.38 1.52 ±0.127 

ES805 34.76 ±4.89 22.49 ±0.71 2.74 ±0.38 1.46 ±0.07 

ES153 37.26 ±4.3 21.27 ±0.95 3.21± 0.49 1.46 ±0.075 

ES203 35.66 ±2.49 20.92 ±0.72 3.39 ±0.24 

 

1.45 ±0.046 

ES803 34.19 ±2.67 19.498 ±1.13 3.47 ±0.33 1.34 ±0.06 

 

 

Figure 6: Ultimate tensile stress of pure epoxy and epoxy-silica nanocomposites. 
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Figure 7: Yield stress of pure epoxy and epoxy-silica nanocomposites. 

 

Figure 8: Ultimate Strain of pure epoxy and epoxy-silica nanocomposites. 
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Figure 9: Young’s modulus of pure epoxy and epoxy-silica nanocomposites. 

IV. SUMMARY AND CONCLUSION 

Pure epoxy and epoxy-silica nanocomposite specimens were prepared to investigate the impact of 

nanoparticle size and weight fraction on mechanical behavior. The nanocomposites contained 3% 

and 5% weight fractions of silica nanoparticles with diameters of 15 nm, 20 nm, and 80 nm. 

Specimens for tensile tests were produced following ASTM D638 standards. The mean porosity 

in each nanocomposite was indirectly estimated to assess the influence of porosity on mechanical 

properties. SEM imaging confirmed efficient nanoparticle distribution with no significant 

clustering. Mechanical testing revealed that adding 5% silica nanoparticles significantly enhanced 

the stiffness of the epoxy polymer. Among the tested sizes, the 20 nm nanoparticles yielded the 

highest ultimate tensile stress, yield stress (0.2% offset), and maximum strain. Additionally, the 

results indicated that larger nanoparticles increased the stiffness of the nanocomposite, while 

Young’s modulus improved as particle size decreased. 
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Abstract 

Compressed air is an essential part of operations at many industrial and manufacturing plants. For 

example, compressed air can be used for stamping, clamping, driving power tools, cleaning tools, 

and powering controls or actuators. Simulink is used to model a continuously operating 

compressed air system, aftercooler, and heat-rejection system. The three main sources of energy 

consumed by the system include the energy consumed by the air compressor’s motor, the energy 

consumed by the aftercooler’s pump, and the energy consumed by the heat-rejection system’s fan 

motor. Testing agencies test equipment per a standard and document performance results. 

Regulatory-governmental-agencies select a testing standard and a minimum performance rating. 

Regulatory agencies allow the manufacturers to advertise and sell their products if, during testing, 

product performance stays within an allowable tolerance. A typical acceptable tolerance for 

compressor airflow is between ± 4% and ± 7%, depending on the compressor’s capacity, 
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meanwhile, according to the ASHRAE 90.1, section G, the typical acceptable tolerance for the 

pump’s waterflow rate is ± 5% of its rated value. Finally, the acceptable fan tolerance is between 

± 3% and ± 5% of its rated value. Also, all other equipment in the plant has its own designated 

tolerances. These tolerances introduce uncertainty in predicting the overall system’s energy 

consumption. The authors have used the compressor airflow’s allowable tolerance in their 

compressed air model to evaluate the effects of this uncertainty on a compressed air system’s 

predicted yearly energy consumption. 

 

Keywords: Compressed air systems; energy consumption; energy efficiency; energy saving; 

simulation modeling; Simulink. 

I. INTRODUCTION 

Compressed air systems are one of the most important systems in the operations at many industrial 

and manufacturing facilities across various industries. Energy management and how to effectively 

deal with it in general have become important in recent years. It has been found that most of the 

energy consumption and energy waste inside these facilities takes place in the compressed air 

systems. It has also been found, during energy-assessment activities for the Industrial Training and 

Assessment Center (ITAC) of the United States Department of Energy that the majority of energy 

savings that achieved for various industrial facilities has come in from making their compressed 

air systems more efficient [1-3]. 

Because of that reality, a longtime topic of interest has been predicting these systems’ energy 

consumption. Numerous articles and research papers have been published with the goal of both 

shedding more light on this subject and educating facility and maintenance engineers, helping them 

to better understand their compressed air systems and how to manage and maintain these systems 

during operations most effectively. These publications have also been critical to helping these 

personnel maximize the energy efficiency and productivity of their compressed air systems during 

operations. These publications also helped them increase performance, productivity, and be more 

efficient in energy consumption and achieve energy efficiency. Maxwell and Rivera [4] have 

focused on developing dynamic system modeling, running different energy-use simulations to 

provide an analytical tool for evaluating the performance of these systems under a variety of 
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operating conditions and control strategies. Schmidt and Kissock [5] estimated energy savings 

from energy conservation retrofits in compressed air systems from air use reduction and other 

changes. Thabet et al. [6] introduced the idea of using intelligent systems to reduce energy 

consumption and increase efficiency in compressors by considering real-time circumstances, 

artificial intelligence (AI), and predicted needs. Widayati and Nuzahar [7] conducted a research 

within the food industry explaining a technique for compressed air system optimization that 

determines the optimal conditions for compressors operation, while also evaluating energy needs 

to improve operating efficiencies, increasing energy savings and lowering costs. Schmidt and 

Kissock [8] presented a methodology that featured case-study examples, using easily obtainable 

performance data and rule-of-thumb methods, for modeling air compressor performance to 

calculate the projected energy savings. Hernandez-Herrera et al. [9] analyzed and calculated 

several main energy efficiency measures that can be applied to compressed air systems as 

necessary tools for companies that want to reduce energy consumption. Hessmer et al. [10] 

provided comprehensive information complied from technical reviews and scoping studies carried 

out at industrial facilities, in which energy efficiency upgrades had been made to the compressed 

air systems. Mousavi et al. [11] presented an overview of techniques used to model energy 

consumption as well as various approaches to controlling compressed air systems and to 

demonstrating the system’s energy consumption dynamics. 

In this research, the authors take a novel approach in predicting overall energy consumption for 

compressed air systems in manufacturing facilities. According to the U.S. Department of Energy’s 

test procedures for compressor final rule (DOE 2016, 216) [12], a typical acceptable tolerance for 

compressor airflow is between ± 4% and ± 7%, depending on the compressor’s capacity. 

According to ASHRAE 90.1, section G (ASHRAE 2019) [13], the typical acceptable tolerance for 

the pump’s waterflow rate is ± 5% of its rated value. Finally, the acceptable fan tolerance is 

between ± 3% and ± 5% of its rated value (AHRI 2016, 4) [14]. Also, all other equipment in the 

plant has its own designated tolerances. Usually, these tolerances are not taken into consideration 

when predicting energy consumption within a feasibility or scope studies pertaining to the 

installation of any new project or when predicting operational costs for a given industrial facility. 

In this research, the authors study the effects of uncertainty on the airflow of compressed air 

systems across a year. A compressed air system model was developed and employed utilizing 

MATLAB Simulink, to evaluate its impacts in predicting total energy consumption and costs for 
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the integral compressed air system. The hourly temperature variation across all of 2021 in Atlanta, 

Georgia, USA, was also considered, to optimally predict total energy consumption for the entire 

system per annum based on an hourly study. The results of this study will help different 

stakeholders and managers develop accurate studies to better estimate costs when they want to 

install a new system or upgrade an existing one. It provides a way to help facility managers more 

accurately predict energy consumption for their compressed air systems. 

II.  COMPRESSED AIR SYSTEM MODEL 

In this paper, a simulation for a compressed air system model was developed utilizing MATLAB 

Simulink based on thermodynamics, heat transfer, and fluid mechanics theories. A visualization 

of a real compressed air system of a certain industrial process that requires a steady amount of 0.5 

kg/sec supply of compressed air at a required pressure of 500 kPa and a maximum temperature of 

30 °C was prepared at the beginning. This compressed air system consists of a) an Isentropic 

compressor with an efficiency of 80 % that compresses a certain amount of air at local ambient 

conditions (100 kPa pressure, and current ambient temperatures) into the required operating 

pressure, b) a cooler acting as a cross-flow heat exchanger to reduce the temperature of the air 

merging from the compressor to no higher than the required maximum temperature of 30 °C in the 

system, c) a water pump that provides the required amount of cooling water, from a cooling tower, 

needed for the heat-exchange process, and d) a cooling tower that reduces the temperature of the 

hot water emerging from the heat exchanger post-heat-exchange process. Figure 1 below shows 

visualization of the compressed air system, including its various components. 

 

 

Figure 1: Visualization of the compressed air system used in the simulation. 

Modeling for the compressed air system consists of engineering formulas and mathematical 

equations that build the system and connect its various components, as explained later in this paper. 
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Each physical component in the above compressed air system visualization was modeled using 

several blocks in SIMULINK. 

In the SIMULINK modeling, each block performs a specific process. The blocks are also arranged 

in the same order as the flow of mathematical equations used to solve the engineering formulas 

that render the results for each physical component (compressor, heat exchanger, water pump, and 

cooling tower) within the integral compressed air system. Each block in the model has input and 

output data; these sets of input data represent numbers tied to each physical component in the 

compressed air system or pull from results from the previous operation of the model, while the 

output data are the results of the specific processes of each block in Simulink. 

A. Compressor Model 

The air compressor modeling begins by identifying the thermodynamic operations required to 

obtain the required operating pressure of 500 kPa and the actual temperature leaving the 

compressor. Fundamental equations governing these operations are shown in Eqs. (1) to (5). The 

ambient atmospheric pressure of 100 kPa represents these equations’ first input data. The second 

input data represent the acceptable mass flow rates of the air that would be compressed by the 

compressor. The last input data are the ambient temperatures. In this paper, the actual variation of 

ambient temperature per hour throughout the year of 2021 were used rather than assuming a fixed 

or input temperature at any moment. Detailed temperature data for Atlanta, Georgia, USA, for 

every hour of the normal business day (8:00 a.m.-8:00 p.m.) in 2021 of most of the area’s industrial 

facilities were obtained from the World Weather website [15] and were used as input data for the 

fundamental mathematical equations governing the entire model during simulations.  

T2s = T1 (
P2

P1
)

k−1
κ

 (1) 

Wcs = Cp(T1 − T2s) (2) 

ηs =
Wcs

Wc
  so that  Wc =

Wcs

ηs
 (3) 

𝑊̇ = 𝑚 ̇ 𝑊𝑐 (4) 

𝑊𝐶 = 𝑚̇𝐶𝑝(𝑇1 − 𝑇2) (5) 
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These equations are modeled using SIMULINK blocks in the correct order to model the 

compressor component’s performance only within the integral compressed air system. 

B. Heat Exchanger Model 

Since air is coming out from the compressor at a high temperature, an effective cooling process 

through a suitable heat exchanger is necessary to reduce this temperature and maintain a maximum 

operating temperature of 30 °C, for safe operations within the facility. A suitable cross flow heat 

exchanger that uses coolant water has been selected for the cooling process. This heat exchanger 

has a surface area of 240 m², a heat transfer coefficient (U) of 225 W/m²∙k., and an efficiency (Є) 

of 94 %. Cooling water enters the heat exchanger at 16° C with a cp of 4.186 kJ/kg∙K, and it will 

be cooled down using a cooling tower and an appropriate water pump after emerging from the heat 

exchanger at a high temperature. Our heat exchanger modeling began by identifying the heat 

transfer operations required to design an effective heat exchanger. The fundamental relations 

governing these operations are shown below: 

 

Step 1: Determining 𝐶min between 𝐶𝑎𝑖𝑟 = 𝑚̇ 𝑐𝑝 of air and 𝐶𝑤𝑎𝑡𝑒𝑟 = 𝑚̇ 𝑐𝑝 of the cooling 

water (6); 

Step 2: Using a heat exchanger efficiency (Є) of 94 %;  

Step 3: Calculating 𝑞𝑎𝑐𝑡 = Є × 𝐶min × ( 𝑇ℎ𝑖 − 𝑇𝑐𝑖) to get the heat transfer rate between the 

entering hot air emerging from the compressor and the entering cold water to the heat exchanger 

(7); and  

Step 4: Using the same heat transfer rate calculated from Step 3 to calculate the air 

temperature leaving the compressor (𝑻𝒉𝒐) from Eq. (8): 

where: 

           P1: Input ambient pressure. 

           P2: The required operating pressure. 

           T1: The hourly input temperatures. 

           T2: The actual temperature leaving the compressor. 

           𝑊̇: Power required to drive the compressor. 
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𝑞𝑎𝑐𝑡 = Є × 𝐶min × ( 𝑇ℎ𝑖 − 𝑻𝒉𝒐)                                               (8) 

 

These steps are modeled later using SIMULINK blocks in the order to model the compressor 

component only within the entire compressed air system. 

C. Open-Circuit Heat-Rejection Model and Total Power Required for the System 

It is necessary to provide the system with a cooling tower and a water pump to keep the cooling 

water used in the heat-exchange process low, at 16° C, after it emerges from the heat exchanger. 

An efficient cooling tower and an appropriate water pump were selected to achieve this process 

after doing the required calculations for the cooling capacity needed. The actual heat to be 

removed from the air compressor by the heat exchanger was obtained at the beginning from Step 

4. According to ASHRAE 90.1, section G.3.1.3.11 (ASHRAE 2019, 317) [13], any open-circuit 

heat-rejection system works between 83° F and 93° F (33.9° C and 28.3° C) as a standard 

operation set point with 𝛥𝑇𝑤𝑎𝑡𝑒𝑟  = 5.6 °C. The mass-flow rate of cooling water used in the heat-

rejection system, 𝑚̇𝑤𝑎𝑡𝑒𝑟, with the unit of kg/sec was subsequently calculated from the following 

equation: 

𝑚̇𝑤𝑎𝑡𝑒𝑟 =
𝑄̇𝑤𝑎𝑡𝑒𝑟 𝑜𝑟 𝑞𝑎𝑐𝑡  

𝑐𝑝−𝑤𝑎𝑡𝑒𝑟 ∙ 𝛥𝑇𝑤𝑎𝑡𝑒𝑟
                                               (9)  

Then the 𝑚̇𝑤𝑎𝑡𝑒𝑟 was converted to GPM. Based on section G3.1.3.11 of ASHARAE 90.1 

(ASHRAE 2019, 317) [13], the maximum fan power for heat-rejection equipment shall have an 

efficiency of 38.2 gpm/hp. Therefore, the fan power, 𝑃𝑓𝑎𝑛, was subsequently calculated from Eq. 

(10):  

𝑃𝑓𝑎𝑛 =
𝑚̇𝑤𝑎𝑡𝑒𝑟

38.2
                                                        (10) 

Based on the same section of the ASHRAE 90.1 (ASHRAE 2019, 317) [13], the maximum pump 

power input should be 19 W/gpm. Therefore, the total pump power, 𝑃𝑝𝑢𝑚𝑝, was calculated based 

on Eq. (11),  

𝑃𝑝𝑢𝑚𝑝 = 19 𝑚̇𝑤𝑎𝑡𝑒𝑟                                                   (11) 
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Modeling for the open-circuit heat-rejection system was performed based on these functions on 

SIMULINK. Meanwhile, total power required for the integral compressed air system was easy to 

predict from the final modeling on SIMULINK, based on the power required to drive the 

compressor (5), the fan power required in (10), and the total pump power (11). 

III. COMPRESSED AIR SYSTEM SIMULATION 

A reliable model, which would later be effectively utilized, was prepared for the next phase of 

simulations and results. According to Table 1 in the U.S. Department of Energy’s test procedures 

for compressor final rule (DOE 2016, 216) [12], a typical acceptable tolerance for compressor 

airflow of is between ± 4% and ± 7%, depending on the compressor’s capacity. It was found, 

based on the current mass flowrate of air (𝑚̇ =  0.5 kg/s =  415.28 × 10−3 m3 ∕ sec) utilized 

in this research, that the acceptable tolerance in airflow is ± 4%. A simulation in Simulink has 

been run on 25 different random values of the (𝑚)̇  in a range of ± 4 %. MS Excel’s “Random” 

function was used between 0.48 kg/s and 0.52 kg/s to get the 25 random values of 𝑚̇. These 

values were then used in the simulation phase on SIMULINK to find total power consumed by 

the integral compressed air system for each random value of 𝑚̇. The total power consumption 

values based on the random values of 𝑚̇ and based on the variation of actual ambient 

temperatures from 8:00 am to 8:00 pm across all of 2021 were recorded. The total power 

consumption of the integrated compressed air system for each value of (𝑚)̇  of air used in the 

simulation represents a total of the power required by the compressor to achieve operation, the 

power used by the cooling tower fan, and the power used by the cooling power pump. Figure 2 

shows an example of total power consumed by the integral system on SIMULINK when a 

random value of 0.495 kg/s for airflow rate (𝑚)̇  was utilized for a simulation from 8:00 a.m. to 

8:00 p.m. throughout 2021. In the figure, the X-axis represents the normal workday hours of 8:00 

a.m. to 8:00 p.m., while the Y-axis represents the total power consumed by the entire system in 

(kW), and each curve represents total hourly power consumption across all 12 months of 2021.  
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Figure 2: Total power consumption for the whole system for 𝑚̇ = 0.495 kg/s on Simulink. 

Curves values were imported after that by MATLAB to an Excel spreadsheet to calculate the 

summation value of the total power consumption of each hour across the year. The total power 

consumption for this simulation in 2021 was found to be 515,234.17 kWh/yr. The same 

operation was performed for the other 24 random values of the mass-flow rate of air to get a set 

of results for the integral system’s total power consumption. 

IV. SIMULATION RESULTS AND ANALYSIS 

A set of results pertaining to total power consumption in the integral system, based on 

simulations of the 25 random values of the mass-flow rate of air were collected. An analysis was 

performed after that via Excel by generating a bell curve for these results, initially calculating the 

Mean value, Standard Deviation value, and then the Normal Z-Distribution values. The bell 

curve was generated based on the total power-consumption values per year (kWh/yr) for the 

results obtained from the simulation and the Normal Z-Distribution values for each result. Figure 

3 below shows the aforementioned bell curve.  
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Figure 3: Bell curve for the simulations results. 

It was found that the majority (68 percent) of the total power consumption values per year lie 

between 508,502 kWh/yr and 534,706 kWh/yr, 95 percent of the total power consumption values 

per year lie between 495,400 kWh/yr and 547,808 kWh/yr, and 99.7 percent of the total power 

consumption values per year lie between 482,298 kWh/yr and 560,910 kWh/yr. Figure 4 shows a 

histogram of the frequency of several total power consumption bins. 

 

Total Power Consumption (KW·hr/Year) 

Figure 4: Histogram of the frequencies of several total power consumption bins. 

 

Based on the number of occurrences shown in Figure 4, it was found that among the performed 

25 random simulations, the majority of total power consumption possibilities occurred two times 
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in 530,000 kWh/yr and 540,000 kWh/yr, with 12 instances and a 48% possibility of occurrence; 

the total power consumption of 510,000 kWh/yr and 520,000 kWh/yr occurred 10 times, with a 

40% possibility of occurrence; the total power consumption of 550,000 kWh/yr occurred 2 times, 

with an 8 percent possibility of occurrence; and the total power consumption of 500,000 kWh/yr 

occurred 1 time, with a 4% possibility of occurrence. 

 

A. Additional Simulations and Analyses 

In the previous section, authors used the parameter uncertainty for only one element of the 

system and simulated the whole year energy consumption of the system. In this section, the 

authors incorporated the effects of multiple elements uncertainties, but only simulated the 

instantaneous pick energy consumption. To do this, authors developed a MATLAB based 

simulation model and included the effects of more parameters uncertainty (outdoor temperature 

sensor tolerance, system operation temperature sensor tolerance, air and water flow capacity 

tolerances affecting the power consumption of the compressor, cooling tower fan and pump) in 

model when evaluating the energy consumption of the overall system. As it was noted earlier, 

this modeling is performed for the pick load condition instant only, but the intention here is to 

show not only the effects of different parameters uncertainty collectively, but to evaluate the 

effects of air leakage in the compressed air system on overall energy consumption of the system 

which is the main cause of energy loss in air compressed systems. The deterministic simulation 

is performed first in the MATLAB based simulation model (with no uncertainty considered) for 

the pick load condition with some specific inputs to the system. The results of this model showed 

the overall energy consumption of the system to be close to 111 kW. Another coding represented 

the simulation result (500 simulations) when the tolerances for the temperature sensors, and air 

and water flows are included in the model. The results as has been depicted in Figure 5 showed a 

possible total energy consumption range of 105 to 117 kW. The system energy consumption 

during the pick load, when there are 5% and 10% leaks in the system was performed as well. 

When there is 5% leak in the system, the overall energy consumption in pick instant, as it is 

shown in Figure 5, has a range of 111 to 123 kW. This represents a possibility of up to 12% 

energy loss (50% chance of 5.5% loss, and 25% chance of 7.5% loss) due to a 5% leak only. 

Finally, when there is a 10% air leak in the system, the overall energy consumption in pick 

instant has a range of 115.5 to 128 kW.  
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Figure 5: Histogram of the frequencies of total power consumption in 3 cases. 

 

This, as it is shown in Figure 5, represents a possibility of up to 15% loss of energy due to a 10% 

leak (100% chance of 4% loss, 50% chance of 10% loss, and 31% chance of 12% loss). 

 

V. CONCLUSION 

 

A model for a compressed air system was prepared and then created on MATLAB Simulink. A 

set of simulations based on different random values within the allowable tolerance for a certain 

rated value of the mass-flow rate of air were run on Simulink for the created modeling. This 

rated value is 0.5 kg/sec, and the tolerance permitted for this value was found to be ± 4% 

(between 0.48 kg/sec and 0.52 kg/sec). It was found via simulation that the total power 

consumption in the compressed air system per year of the rated mass-flow rate of air (0.5 kg/sec) 

was 520,438 kWh/yr, but due to the allowable tolerance for the rated value of airflow into the 

compressor, we saw that the total consumption per the year can be any value between 499,621 

kWh/yr and 541,256 kWh/yr. So, it was concluded that the total energy consumption of this 

compressor per year based on uncertainty in the air-flow rate to the compressor can vary across a 

remarkable range of 41,635 kWh/yr between 499,621 kWh/yr and 541,256 kWh/yr, instead of 

520,438 kWh/yr. Also, modeling was done while multiple parameters uncertainty was 
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considered. Simulation represented similar outcomes. In addition, the effects of air leaks were 

evaluated on overall energy consumption of the system, pointing to major energy losses due to 5 

to 10% leaks only. Allowable tolerance in the mass-flow rate of the air used in air compressors 

can cause a considerable range of possible power consumption instead of only one calculated 

value, and that these tolerances are the source of uncertainty when predicting a compressed air 

system’s total yearly energy consumption. To accurately predict total energy consumption, plant 

design and energy engineers designing any facility with air compressors should consider these 

tolerances in their calculations when predicting a compressed air system’s total energy 

consumption, instead of depending only on one value for the mass-flow rate of air. In this paper, 

the authors proved - based on modeling and the simulation of a real compressed air system of a 

certain industrial process - that uncertainty has a remarkable effect on total energy consumption. 

They explained in detail a general method and provided a useful technique that can be employed 

for any compressed air system to predict the system’s total energy consumption while also 

considering the uncertainty resultant from allowable tolerances in the air-flow rates. One 

important finding here is that a decrease in allowable manufacturing tolerances could contribute 

to reducing uncertainty and therefore rendering greater energy savings. Another important 

finding is that the authors have shown that only one unknown factor (e.g., equipment-test 

tolerance allowance) can contribute to 2.5% to 4% of uncertainty within a system’s overall 

energy consumption. Given that guideline state that the allowable tolerances for airflow entering 

the compressor is 4% to 7% for different quantities of airflow, it can be seen that the uncertainty 

within the system’s overall energy consumption can actually be even higher than the predicted 

2.5% to 4% found here. 

 

V. Future Work 

 

The created compressed air modeling in this report can be implemented in many other research-

based projects and experiences as well. The authors plan to use it in identifying other variables 

and changes that occur within integral compressed air systems and to study the effects of 

uncertainty resultant from these variables when predicting a compressed air system’s energy 

consumption. The modeling can also be used to check the effects of the air leakages that take 

place when operating compressed air systems within industrial facilities. The produced air 
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pressure used in this current research can also be modified within a specific range – say, to that 

of the operational ranges used in most facilities – to study how changing the inputs affects the 

outputs of compressed air systems. A lot of research ideas and expansion can be performed using 

this current model and based on the results of this research in the future, manufacturers and 

engineers at industrial facilities will be able to better increase their compressed air system's 

efficiency and performance, predict actual total energy consumption, and increase the system's 

energy efficiency. As noted earlier, the authors have evaluated the effects of uncertainty 

pertaining to the volumetric airflow quantity entering the air compressor on a typical compressed 

air system’s overall energy consumption. The authors have shown that the permitted tolerances 

given by the regulatory standards based on manufacturers’ testing structures can contribute to 

uncertainty when predicting the overall system’s energy consumption. Of course, uncertainty can 

be generated from different (other) sources/equipment as well, and their inclusion would help us 

more accurately model energy consumption. As mentioned throughout the paper, the authors 

have only focused on only one uncertainty parameter (the quantity of compressed airflow) in 

developing this model. This model can be considerably improved by introducing the uncertainty 

parameter of other (more) equipment designated for usage in the overall plant. Such work would 

allow the user to perform a greater number of evaluations, such as sensitivity analysis, and point 

out which equipment is having the most profound impact on the plant’s overall energy 

consumption. 
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ABSTRACT 

This paper presents the design and optimization of a novel lab-scale green hydrogen 

production system driven by solar photovoltaic (PV) energy. The primary focus is to 

enhance the efficiency of hydrogen production by addressing key challenges in electrical 

integration and power electronics. To achieve minimal power losses and maintain voltage 

and current levels within optimal operating parameters, advanced energy conversion 

techniques have been implemented. The system incorporates real-time control to 

dynamically synchronize PV output with electrolyzer requirements, maximizing 

production efficiency. Experimental results show that the system achieves a hydrogen 

production rate of up to 3.0 liters over 10 minutes at an optimal operating current range of 

1.0–2.5 A, and an input voltage range of 4.5–7.5 V. Compared to conventional systems, 

the setup demonstrated an 18% reduction in power losses and a 25% improvement in 

operational stability under fluctuating irradiance conditions. The integration of battery 
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storage and a solar emulator further supports consistent performance, making the system a 

promising model for scalable, renewable hydrogen generation. While this work primarily 

evaluates hydrogen production, oxygen was also generated in a 2:1 molar ratio and 

released, with future work aimed at capturing and utilizing this byproduct. 

 

Keywords: Green hydrogen; solar electrolysis; PV integration; power electronics; energy 

efficiency. 

 

I. INTRODUCTION 

Solar energy, harvested from the sun’s abundant and renewable radiation, is an unlimited 

and sustainable energy resource. Technological advancements have greatly enhanced the 

efficiency of capturing and converting solar energy into usable forms, establishing solar 

power as a key component in the clean energy transition. This section discusses the core 

principles, applications, and emerging innovations in solar technologies. The renewable 

and eco-friendly characteristics of solar energy make it a critical alternative to conventional 

fossil fuels, addressing the global demand for clean energy while mitigating climate change 

[1]. Solar photovoltaic (PV) systems have emerged as a leading solution due to their 

increased efficiency and cost-effectiveness in converting sunlight directly into electricity 

[2]. 

Recent developments in building-applied photovoltaics (BAPV) and building-integrated 

photovoltaics (BIPV) highlight their dual roles in power generation and architectural 

integration, enhancing both energy efficiency and building aesthetics [3]. Similarly, solar 

thermal technologies for heating, cooling, and thermal energy storage are gaining 

recognition for their role in low-carbon buildings [4]. Emerging trends focus on scalable 

and adaptable PV systems, including floating PV arrays and large-scale ground-mounted 

solar power plants, which demonstrate significant potential in diverse environments [5]. 

Additionally, vehicle-integrated photovoltaics (VIPV) are gaining traction due to their 

applications in the automotive sector, expanding the scope of solar energy usage [6]. 

Crystalline silicon (c-Si) solar cells dominate the market due to their high efficiency, 
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affordability, and environmental safety [7]. Furthermore, photovoltaic monitoring systems 

(PVMS) are essential for maintaining system performance, offering real-time data and 

enabling predictive maintenance [8]. The integration of digital technologies, including the 

Internet of Things (IoT) and Big Data analytics, has revolutionized solar energy systems 

by improving operational efficiency, monitoring, and maintenance [9]. Policy frameworks 

and economic incentives play a crucial role in driving solar energy adoption. Governments 

worldwide have implemented policies promoting renewable energy to support 

sustainability, economic development, and environmental conservation [10]. 

Advancements in energy storage systems complement the growth of solar technologies by 

addressing the intermittent nature of solar energy. Enhanced battery storage solutions 

improve grid integration, reliability, and overall system stability [11]. 

The integration of solar energy into the transportation and industrial sectors is significantly 

advancing decarbonization strategies. In transportation, the deployment of solar-enabled 

infrastructure—such as electric vehicle (EV) charging stations and solar-assisted public 

transit systems—is experiencing accelerated growth [12]. VIPV embed solar modules 

directly onto vehicle surfaces, are being engineered to extend EV driving range and reduce 

reliance on conventional charging infrastructure [13]. Several urban centers have piloted 

solar-powered public transportation systems—such as buses and trains—highlighting their 

effectiveness in decreasing fossil fuel use [14]. Within the industrial sector, solar energy is 

being applied in both electricity generation and thermal applications. Energy-intensive 

industries, including manufacturing, textiles, and mining, are progressively implementing 

photovoltaic and solar thermal technologies to satisfy operational energy demands while 

simultaneously lowering emissions and cutting energy expenses [15]. Furthermore, utility-

scale solar installations provide shared-access energy solutions, enabling industries to 

benefit from cost-efficient renewable power through centralized infrastructure and 

economies of scale [16]. Overall, integrating solar technologies across these domains 

strengthens energy resilience, promotes environmental sustainability, and fosters new 

economic development pathways. 
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Green hydrogen, generated via water electrolysis powered by renewable energy sources, is 

increasingly recognized as a pivotal solution in advancing low-carbon energy systems. As 

a clean, zero-emission fuel, it holds particular promise for decarbonizing sectors that are 

not easily electrified [17]. Ongoing enhancements in electrolyzer design—especially in 

proton exchange membrane (PEM) and alkaline systems—have significantly contributed 

to lowering production costs and boosting operational efficiency, thus improving the 

viability of large-scale deployment [18]. Research also indicates that improved durability 

and performance of electrolyzers are critical factors driving the advancement of green 

hydrogen technologies [19]. 

Policy support has been a major enabler of progress in this field. Strategic initiatives such 

as the European Union’s Hydrogen Strategy, along with national programs in Germany 

and Japan, have directed substantial public funding and introduced incentives that are 

accelerating the adoption of green hydrogen technologies [20]. These frameworks are 

essential in developing infrastructure and market readiness for widespread implementation. 

Nevertheless, green hydrogen still faces notable barriers, particularly in areas related to its 

storage, distribution, and transport. Its inherently low volumetric energy density poses 

challenges, requiring the development of advanced storage technologies that are both 

efficient and economically viable [21]. Furthermore, existing energy systems must be 

adapted to accommodate hydrogen, which may involve extensive infrastructure 

modifications [22]. Solving these issues is imperative for green hydrogen to achieve 

meaningful scale. 

Due to its adaptability, green hydrogen is being investigated for diverse applications across 

sectors. In transportation, it is under consideration as a sustainable fuel for long-haul trucks, 

public transit, and aviation—contributing to reduced reliance on petroleum-based fuels 

[23]. In industrial operations, it is finding use as a low-emission feedstock in sectors such 

as ammonia production and steelmaking, helping to decarbonize processes traditionally 

associated with high carbon footprints [24]. 
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Looking forward, the scalability of green hydrogen depends on continuous innovation in 

key technological domains. Advancements in electrolyzer efficiency, integration with 

renewable energy sources, and cost-effective hydrogen logistics are essential for expanding 

its role in the global energy mix. Interdisciplinary collaboration among policy-makers, 

researchers, and industry stakeholders will be vital to overcoming current limitations and 

driving broader adoption [25]. With its potential to support decarbonization goals and 

strengthen energy resilience, green hydrogen is positioned to be a cornerstone of future 

sustainable energy systems. Novel experimental setups, such as the capillary-fed 

electrolysis cells reported in recent studies, have demonstrated higher hydrogen production 

rates while minimizing energy losses [26]. The integration of acoustic stimulation in 

electrolysis, resulting in a 14-fold increase in efficiency, highlights a novel mechanism for 

enhancing hydrogen evolution reactions under neutral pH conditions [28]. 

Additionally, a groundbreaking membrane-based seawater electrolyzer has emerged as a 

cost-effective solution by eliminating the need for energy-intensive pre-desalination 

processes, making it ideal for coastal applications [27]. These innovations address critical 

challenges related to feedstock availability, energy efficiency, and scalability, positioning 

green hydrogen as a viable alternative to conventional hydrogen sources. Green hydrogen, 

produced through the electrolysis of water using renewable energy sources, has emerged 

as a key component in the transition to sustainable energy systems. However, many 

existing experimental studies focus either on large-scale installations or theoretical 

simulations and often lack a practical, reproducible lab-scale platform for testing the 

integration of PV and electrolysis systems. Challenges such as inconsistent solar irradiance, 

lack of real-time control, and inefficient power transfer still hinder optimal hydrogen 

production at small scales. Moreover, most existing systems do not account for the need to 

simulate solar conditions indoors or adjust PV output dynamically based on electrolyzer 

behavior. 

 

This paper addresses these limitations by presenting a novel, modular lab-scale green 

hydrogen production system that integrates PV panels, battery storage, real-time 
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monitoring, and a programmable solar emulator. The system is designed to operate flexibly 

under both simulated and natural sunlight, with a decentralized control mechanism 

ensuring optimal voltage and current delivery to the electrolyzer. 

 

The novelty of this work lies in its combined use of simulation-driven LED-based solar 

emulation, real-time power management, and experimental validation. This setup enables 

accurate performance characterization, improves operational stability, and supports 

scalable design concepts. The proposed platform bridges the gap between theoretical 

modeling and real-world implementation, serving as a foundation for future research and 

development in sustainable hydrogen production systems. 

 

Fully renewable microgrids integrated with battery storage systems have been identified as 

a viable approach to producing green hydrogen efficiently. These microgrids encompass 

generation, transmission, distribution, and storage systems powered by renewable sources 

and are classified into DC microgrids, AC microgrids, and hybrid configurations based on 

their operational setup [29-30]. By leveraging PV emulators and advanced battery storage, 

microgrids mitigate the intermittent nature of solar power while ensuring a stable and 

continuous energy supply to the electrolyzer [29]. 

 

Experimental setups demonstrate the potential of such systems, with decentralized control 

ensuring optimal voltage and current conditions for hydrogen production. Recent research 

in lab-scale configurations integrating PV emulators and battery systems has shown 

promising results, improving power stability and reducing energy losses during electrolysis 

[30]. These innovations further establish microgrid-based hydrogen production as a 

scalable and modular solution for future renewable energy systems [31]. 

 

The main objective of this research is to design, develop, and optimize a scalable and 

modular lab-scale system for green hydrogen production by integrating PV emulators, 

battery storage, and decentralized control systems within renewable microgrids. The study 
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aims to address key challenges related to energy intermittency, efficiency losses, and 

system integration, providing an innovative framework for stable and cost-effective 

hydrogen production. By investigating advanced control mechanisms and power 

stabilization techniques, this research contributes to the development of scalable solutions 

that align with global sustainability goals and offer practical applications in industrial, 

transportation, and energy sectors. 

 

 

II. MATERIALS AND METHODS 

 

A. Experimental Setup Description 

The experimental setup for green hydrogen production integrates key components for 

efficient operation, as illustrated in Figures 1 and 2. The system is divided into two main 

areas: the hydrogen generation system and the data acquisition section. The hydrogen 

generation begins with PV panels that convert solar energy into electrical power.  

 

Figure 1. Schematic diagram of the experimental setup for green hydrogen production 

using PV modules, an electrolyzer, and a battery storage system. 
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This power is regulated through a charge controller to ensure stable operation and prevent 

overcharging of the connected battery storage system. The battery stores excess energy, 

providing a reliable power supply to the electrolyzer during periods of low solar 

availability. Water from a dedicated source is supplied to the electrolysis PEM unit, where 

it is split into hydrogen and oxygen gases. These gases are directed into a separation tank, 

where the oxygen and hydrogen are segregated. The hydrogen output is monitored via a 

flow rate sensor and sent to a burner for heating applications, demonstrating its practical 

use in thermal energy systems. Oxygen is also monitored and directed to an aeration tank 

to support secondary applications, such as enhanced oxygenation in water treatment 

processes. The hydrogen flow rate was measured using a Dwyer Visi-Float analog flow 

meter, with a measurement range of 0–5 L/min and an accuracy of ±3% of full scale, 

equivalent to approximately ±0.15 L for the 10-minute test duration. Oxygen was also 

produced at the anode during electrolysis and released into the atmosphere. Based on 

Faraday's law, the molar ratio of hydrogen to oxygen is 2:1. While oxygen was not 

quantitatively measured in this study, its generation was visually confirmed, and future 

system designs may include oxygen capture for utilization in secondary processes. 

 

 

Figure 2. Prototype implementation of the experimental setup for hydrogen generation 

through solar-powered electrolysis. 
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To allow testing under varying conditions, a solar emulator simulates sunlight, ensuring 

flexible experimentation regardless of natural weather conditions. The data acquisition 

system includes a DataMaster Control Box and a power analyzer, which monitor power 

flow and log key performance metrics related to power output, system efficiency, and 

hydrogen production. The modular and scalable setup highlights the potential for integrating 

renewable energy sources with hydrogen production for future sustainable energy 

solutions.The implemented model and selected parameters are designed to match 

commercially available products to ensure practical and scalable deployment. To enhance 

data accuracy and ensure system safety, additional measuring instruments were integrated 

into the setup. A gas flow rate meter was used to quantify hydrogen production, offering a 

measurement range of 0–5 L/min and an accuracy of ±3%. Type K thermocouples were 

installed at key points to monitor temperature within a range of -50°C to 200°C, with an 

accuracy of ±1.1°C. A combustible gas leak detector was continuously used to detect 

potential hydrogen leaks, with a detection sensitivity of ≤50 ppm and a range up to 10,000 

ppm. These devices were essential for validating experimental results and ensuring the safe 

operation of the system. The specifications of the key equipment used in the experimental 

setup are summarized in Table 1. 

 

Table 1: Specifications of the Lab Components. 

EQUIPMENT SPECIFICATIONS 

Battery 12V, 100Ah capacity, sealed lead-acid design 

Charge Controller 12/24V, 30A capacity, regulates power from PV to storage 

system 

Inverter 1000W, single-phase sine wave inverter, 12V input 

Electrolyzer 200W, 12V, PEM  

PV Panel  100W output, Vmp: 18.6V, Imp: 5.38A 

Combustible Gas Leak 

Detector 
Detection range: 0–10000 ppm; Sensitivity: ≤50 ppm 
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Gas Flow Rate Meter 
Measures hydrogen output; Accuracy: ±3%; Range: 0–5 

L/min 

Temperature Sensors 
Type K thermocouples; Accuracy: ±1.1°C; Range: -50°C to 

200°C 

 

B. Solar Emulator Design 

The solar emulator in this experimental setup is designed to provide controlled and uniform 

light distribution to the PV panels, simulating solar irradiance conditions indoors. This 

emulator ensures that experimentation can be conducted irrespective of natural sunlight 

availability while accurately replicating real-world conditions. The design and 

optimization of the light distribution were achieved using simulation tools, allowing for 

precise adjustments and improved performance. The solar emulator consists of a series of 

high-intensity LED light strips strategically positioned above the PV panels. A photo of 

the implemented emulator showing the LED bar array and its mounting over the PV panel 

is provided in Figure 3. This setup demonstrates the physical arrangement used in the lab 

to deliver consistent and uniform irradiance. The LEDs are selected to emit light within the 

spectrum similar to sunlight, ensuring that the PV cells experience conditions that closely 

mimic actual outdoor irradiance. The physical arrangement of the LEDs and their spacing 

were optimized to minimize shading and achieve a uniform distribution of light across the 

PV panel surface. 
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Figure 3: Solar emulator with LED light strips simulating solar irradiance for 

controlled PV panel testing 

 

Each LED unit delivers up to 700 W of optical power and contains advanced horticultural-

grade diodes with a spectral output tailored to match the 400–700 nm photosynthetically 

active radiation (PAR) range, aligning with the PV panel’s peak spectral response. The 

fixture provides uniform light distribution over a 4 ft ×4 ft testing area, with dimmable 

intensity control and passive heat dissipation to maintain thermal stability during long-

duration experiments. 

To ensure that the emulator replicates natural sunlight conditions, irradiance distribution 

was modeled and optimized using simulation software. Measured I-V characteristics of the 

PV panel under emulator lighting were then compared to outdoor sunlight performance 

and benchmark data in literature. Results showed a deviation of less than 7%, validating 

the emulator’s ability to deliver reliable and repeatable results under lab-controlled 

irradiance conditions. To validate and optimize the design, a computational simulation was 

performed using DIALux evo 9.2, a lighting simulation software commonly used for 

architectural lighting analysis [32]. The software provided a detailed irradiance contour 

map across the PV surface, enabling iterative refinement of the LED arrangement to 

achieve uniform intensity and eliminate hotspots or shadowed zones. The software 
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provided a detailed visual representation of how light is distributed, as shown in Error! 

Reference source not found.. The simulation considered factors such as panel angle, LED 

placement, and reflective surfaces within the emulator to ensure consistency. The software 

output included irradiance contour maps, as shown in Error! Reference source not 

found., highlighting the intensity variations and guiding adjustments in the LED 

positioning to achieve near-uniform light coverage using DIALux software. 

 
 

Figure 4: Simulated light distribution across the PV panel surface, showing optimized 

uniform irradiance. 

 

The simulation also facilitated the identification and mitigation of hotspots and low-

irradiance zones by iteratively refining the LED layout. Key parameters—such as LED 

mounting height, beam angle, spacing, and reflective boundaries—were systematically 

adjusted to optimize uniformity. This approach ensured that the irradiance across the PV 

panel surface was both consistent and closely matched typical outdoor solar conditions in 

terms of spatial distribution and spectral characteristics. As a result, the final design ensures 

that the PV panels receive consistent and sufficient irradiance, mimicking real solar 

conditions with high accuracy. This design not only improves the reliability of the 

experimental data but also ensures that the PV system's performance under varying light 
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conditions is accurately assessed, enhancing the overall precision of the hydrogen 

production experiments. 

 

III. MATHEMATICAL MODELING 

 

This section presents the mathematical modeling used to characterize the performance of 

a PV system integrated with an electrolyzer for hydrogen and oxygen production via water 

electrolysis. 

 

A. Photovoltaic System Modeling 

The electrical behavior of the PV system is described using fundamental equations and an 

equivalent circuit representation, Figure 5. The current output from the PV cell is expressed 

as Eq. 1: 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ                                                  (1)  

 

 

Figure 1: PV equivalent circuit 

Eq. (1) describes that the output current (𝐼𝑝𝑣) is the difference between the photocurrent 

(𝐼𝑝ℎ), the diode current (𝐼𝑑), and the shunt current (𝐼𝑠ℎ). The photocurrent depends on solar 

irradiance and temperature. 𝐼𝑑 models current through the diode (p-n junction), and 𝐼𝑠ℎ 

represents leakage losses due to cell imperfections. 

The PV cell’s equivalent circuit consists of a current source for 𝐼𝑝ℎ, a diode, a series 

resistance (Rs) accounting for internal resistive losses, and a shunt resistance (Rsh) 
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representing leakage across the junction. A more detailed expression for current under 

open-circuit conditions is given by Eq. (2): 

 

𝐼𝑃𝑉,0 =

(𝐼𝑝ℎ(𝐺,𝑇)−[𝐼𝑝ℎ(𝐺,𝑇)−(
𝑉𝑂𝐶

𝑅𝑝
)]∗

𝑒

𝑉
𝑉𝑡(𝑇)∗𝑁𝑐𝑠

𝑒

𝑉𝑂𝐶
𝑉𝑡(𝑇)∗𝑁𝑐𝑠

−
𝑉

𝑅𝑝
)

1+
𝑅𝑠

𝑅𝑝

                           (2) 

 

Eq. (2) comprehensively accounts for critical PV parameters including the open-circuit 

voltage (Voc), diode ideality factor (Ncs), thermal voltage (Vt), and the resistive 

components Rs and Rp. These parameters are essential for capturing the nonlinear 

electrical characteristics of photovoltaic cells under varying environmental conditions such 

as irradiance fluctuations and temperature changes. By integrating these factors into the 

model, the system provides a more robust and predictive simulation of PV behavior, which 

is indispensable for reliable energy output estimation. 

 

The electrical power generated by the PV array serves as the input to the electrolyzer. 

Consequently, the current-voltage (I–V) profile of the PV system plays a pivotal role in 

determining the operational regime and efficiency of hydrogen production. The interaction 

between these two subsystems—PV and electrolyzer—is therefore central to the system’s 

overall energy conversion efficiency and is rigorously characterized within this integrated 

framework. 

 

B. Hydrogen Production Model 

 The model links the PV system’s output to the electrolyzer's input through the relationship 

between electrical energy and gas production. 

H2 = [
P ∙ VH2

R∙T
] × 1.67 × 10−3                                                      (3) 

 

Eq. (3) is derived from the Ideal Gas Law PV = nRT, estimates the quantity of hydrogen 

gas produced based on the pressure (P), volume (V), and temperature (T) within the 
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electrolyzer. The universal gas constant (R) where The universal gas constant was taken as 

R = 8.314 J/mol·K, and standard temperature and pressure (STP) conditions were assumed 

where applicable. In cases where molar volume was used directly, the value of 22.4 L/mol 

at STP was applied. All gas law-based calculations maintained unit consistency 

throughout., and a specific conversion factor 1.67 × 10−3 ,adjusts for non-ideal conditions 

in the electrolyzer, accounting for system losses and variations in gas behavior. 

The electrochemical reaction for water splitting is given by Eq. (4): 

2H2O(l)→2H2(g)+O2(g)                                          (4) 

This process is powered by renewable energy from the PV system and relies on precise 

control of current and voltage inputs to maximize the production efficiency of hydrogen 

and oxygen gases. 

The mathematical model plays a critical role in predicting hydrogen production rates under 

various environmental conditions. By integrating real-time measurements of current, 

voltage, pressure, and temperature, the model refines the Ideal Gas Law using the unique 

conversion factor. This adjustment compensates for real-world discrepancies, such as 

energy losses in the system, electrolysis efficiency, and gas behavior at specific operating 

temperatures and pressures. Consequently, the model offers an accurate representation of 

the system's performance, ensuring reliable predictions of hydrogen output and supporting 

system optimization for sustainable green hydrogen production. 

 

IV. RESULTS AND DISCUSSION  

 

This section presents the findings from the comprehensive analysis of integrating PV 

systems with the aeration tanks of a WWTP. A series of power flow studies were conducted 

to evaluate the electrical performance under various operational scenarios, both with and 

without PV integration. Additionally, experimental assessments were performed to 

determine the impact of the aeration tanks on the efficiency of the PV panels. Uncertainty 

for each measurement was calculated based on equipment datasheets and is shown as error 

bars in the graphs to represent the confidence range in the experimental data. The following 
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subsections detail the outcomes of these studies, providing insights into the system's 

stability, energy efficiency, and the synergistic effects of combining PV technology with 

aeration processes. 

 

A. I-V Characteristics of PV Modules under Variable Irradiance 

The performance of the PV modules was characterized by their current-voltage (I-V) 

behavior under different irradiance levels, as illustrated in Error! Reference source not 

found.. The irradiance levels ranging from 101 W/m² to 265 W/m² were selected based on 

actual outdoor solar radiation measurements recorded in Milwaukee, Wisconsin, under 

cloudy and partially sunny winter conditions. These values were used in the emulator to 

replicate realistic sub-optimal solar scenarios, which are important for assessing system 

performance beyond ideal test conditions, and the experiments were conducted using the 

solar emulator to provide controlled, consistent testing conditions. The results reveal a 

strong dependence of the short-circuit current (𝐼sc) on the irradiance level, consistent with 

the theoretical relationship between photocurrent (𝐼ph) and solar radiation intensity. As 

expected, the short-circuit current (𝐼sc) increased linearly with rising irradiance, with the 

highest current output of approximately 2.5 A observed at 265 W/m². At lower irradiance 

levels, such as 101 W/m², the current output decreased significantly, confirming that the 

charge carrier generation within the PV cells is directly proportional to the photon flux 

incident on the cell. This trend aligns with the predictions of the PV cell equivalent circuit 

model, where 𝐼ph dominates the output current under varying sunlight conditions.In contrast 

to the current response, the 𝑉oc exhibited only a marginal increase with increasing 

irradiance, as the voltage depends more on the material properties of the PV cell and the 

temperature-dependent saturation current of the diode.  
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Figure 6. I-V characteristics of PV modules under varying irradiance 

 

The observed variations in voltage were minimal, indicating that changes in irradiance 

primarily affect the current output rather than the voltage.The flat portions of the I-V 

curves, particularly at high irradiance levels, highlight the modules’ ability to deliver a 

relatively stable current over a range of voltages, a critical attribute for ensuring reliable 

power supply to the electrolyzer. This characteristic enhances the stability of the 

electrolyzer's input power, mitigating fluctuations in the electrolysis process and 

supporting continuous hydrogen generation. The results from the I-V characteristics, 

Figure 6, demonstrate the effectiveness of the solar emulator in accurately simulating 

varying solar conditions and validate the capability of the PV system to meet the power 

requirements of the electrolyzer. These findings provide a foundation for further 

performance analysis by correlating the PV output to the electrolyzer’s hydrogen 

production rates under different operating conditions. The observed data will be utilized in 

future work to optimize the integrated system and enhance overall efficiency through 

improved energy management strategies. 
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B. Electrolyzer Performance: I-V and P-V Characteristics 

The performance evaluation of the electrolyzer was conducted using experimental data 

obtained from the implemented lab setup, as shown in Error! Reference source not 

found.. The applied voltage was varied from 0 to 8.5 V, and the resulting current and power 

outputs were measured in real-time to assess the electrolyzer’s behavior and efficiency 

under operating conditions consistent with the PV system's power supply. 

The experimentally measured I-V curve exhibits the characteristic nonlinear behavior of 

electrolytic processes. At low voltages (below approximately 1.8–2 V), the current remains 

near zero, indicating insufficient energy to overcome the activation barrier of the water-

splitting reaction. In this region, minimal hydrogen production is observed due to limited 

electrochemical activity. As the voltage surpasses the threshold value of 2 V, a rapid 

increase in current occurs, reflecting the onset of significant hydrogen production. The 

current reaches approximately 1 A at 4 V and peaks at 2.5 A at 8.5 V. This sharp current 

rise demonstrates the accelerated electrolysis process once the activation energy 

requirement is met, with the current output strongly dependent on the applied voltage. The 

nonlinear growth in current emphasizes the importance of maintaining an appropriate 

voltage range to maximize hydrogen output efficiently. 

The experimentally obtained P-V curve, which represents the power delivered to the 

electrolyzer as a function of the applied voltage, follows a quadratic trend consistent with 

the relationship P=V×I. At low voltages (below 2 V), the power output is negligible due to 

minimal current flow. However, as the voltage increases beyond the activation threshold, 

the power rises rapidly, reaching a maximum of 21 W at 8.5 V. This result highlights the 

trade-off between energy input and hydrogen production rate. While higher voltages result 

in greater power delivery and hydrogen output, the increasing energy consumption due to 

resistive losses and overvoltage effects reduces the overall system efficiency. Therefore, 

identifying an optimal voltage range is critical to achieving efficient hydrogen production 

without excessive energy consumption. 
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Figure 7. Experimentally measured I-V (left) and P-V (right) curves of the electrolyzer 

 

The experimental results shows that the optimal operating voltage range for the electrolyzer 

is between 4.5 V and 7.5 V. Within this range, the electrolyzer achieves a high current 

output, ensuring substantial hydrogen production, while avoiding the significant efficiency 

losses associated with higher voltages. Operating beyond 8 V results in diminishing returns 

due to nonlinear power consumption and increased resistive heating. These findings, 

obtained directly from the implemented lab system, are crucial for integrating the PV 

system with the electrolyzer effectively. By dynamically adjusting the operating voltage 

based on the available solar power, the system can maximize hydrogen production while 

maintaining high energy efficiency. 

C. Green Hydrogen Production  

The relationship between the current supplied to the electrolyzer and The measured 

hydrogen volumes was normalized to time and presented as flow rates (L/min) for better 

clarity and standardization. This allows a more direct comparison of hydrogen production 

performance under varying current conditions as illustrated in In Figure 8, f. The data, 

collected directly from the implemented lab-scale setup, reveal a strong correlation 

between the supplied current and the rate of hydrogen generation. The setup consists of a 

PV system connected to the electrolyzer through a charge controller and battery storage to 

ensure stable power delivery. The current to the electrolyzer is adjusted to simulate varying 
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real-world solar power conditions and to evaluate the efficiency of hydrogen production 

under different operating currents. To ensure the reliability of experimental results, 

uncertainty bars have been included in all performance-related figures. These represent 

sensor accuracy as per manufacturer specifications. Hydrogen volume data includes an 

uncertainty of ±0.15 L, derived from the ±3% full-scale accuracy of the flow rate meter. 

Current and power readings include ±0.5% uncertainty, based on the power analyzer’s 

datasheet. 

At low current levels (0–0.5 A), hydrogen production is minimal, with less than 0.5 L 

generated during the 10-minute period. This corresponds to the initial activation phase of 

electrolysis, where most of the energy input is consumed in overcoming the activation 

energy needed for the water-splitting reaction. As the current increases beyond 0.5 A, 

hydrogen production exhibits a near-linear relationship, reaching approximately 3.0 L at a 

current of 2.5 A. This linear behavior is in accordance with Faraday’s law of electrolysis, 

which states that the amount of hydrogen produced is proportional to the electric charge 

passed through the electrolyte.  

The lab experiments confirmed this theoretical prediction by continuously monitoring 

hydrogen production using a gas flow meter and integrating the recorded flow rate over the 

10-minute interval. The power supplied to the electrolyzer was dynamically controlled to 

maintain the desired current levels using real-time data from the power analyzer and the 

DataMaster control system, ensuring accurate measurements and system stability. The 

observed near-linear increase in hydrogen production suggests that the electrolyzer 

operates efficiently within the current range of 1.0–2.5 A. However, slight deviations from 

perfect linearity are seen at higher current levels, which are attributed to system 

inefficiencies such as increased resistive heating, gas bubble formation on the electrode 

surfaces, and limitations in ion transport within the electrolyte. These effects were also 

confirmed during lab observations, where excessive current resulted in localized heating 

and reduced hydrogen flow consistency. 

The experimental setup highlights the importance of optimizing current density to balance 

hydrogen production rates and system efficiency. The integration of these results into the 
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PV-electrolyzer system ensures that the current can be dynamically adjusted based on real-

time solar power availability. By maintaining the operating current within the optimal 

range, the system can achieve maximum hydrogen production while minimizing energy 

losses and inefficiencies. 

 

Figure 8. Hydrogen flow rate as a function of input current. 

 

In Figure 8, flow rates were calculated by dividing the total hydrogen volume collected 

over 10 minutes. Error bars represent ±0.015 L/min uncertainty based on ±3% full-scale 

accuracy of the flow sensor. To further validate the system's efficiency, Figure 9 shows a 

correlation between hydrogen produced (liter) and input electrical energy (Watt-minute)  

presents the relationship between input electrical energy and the amount of hydrogen 

produced. As shown, a near-linear correlation is observed, confirming that higher electrical 

energy results in greater hydrogen output, in line with Faraday’s Law.  
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Figure 9. Correlation between hydrogen produced and input electrical energy  

 

This graphical representation supports the system’s classification as an efficient hydrogen 

production platform. Figure 9 shows a correlation between hydrogen produced (liter) and 

input electrical energy (Watt-minute) over a 10-minute interval. The error bars represent 

±0.15 L hydrogen flow uncertainty. 

 

V. CONCLUSIONS 

This paper presents a novel lab-scale system for green hydrogen production by PV 

modules, advanced power electronics, and an electrolyzer. The implemented system  

system addresses critical challenges associated with system efficiency, scalability, and the 

intermittent nature of solar energy. A key innovation of this study is the design and 

implementation of a solar emulator, enabling controlled experiments under varying 

irradiance conditions and ensuring reliable performance evaluation. By dynamically 

optimizing power delivery from the PV system to the electrolyzer through real-time 

monitoring and control, the system achieved stable hydrogen production with minimal 

efficiency losses. The experimental results demonstrate that operating the electrolyzer 

within an optimal current range of 1.0–2.5 A leads to efficient hydrogen production, with 
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up to 3.0 L of hydrogen generated over a 10-minute operational period. The I-V and P-V 

characteristics reveal that an optimal voltage range of 4.5–7.5 V effectively balances 

hydrogen production rates while minimizing resistive and overvoltage losses. The 

integration of a charge controller and battery storage system further supports stable power 

delivery, allowing continuous operation under fluctuating solar conditions. This modular 

and scalable design shows significant potential for practical deployment in industrial and 

transportation applications, contributing to decarbonization and environmental 

sustainability. Future work will focus on optimizing the electrolyzer’s performance 

through advanced electrode design, improved catalysts, and optimized electrolyte flow to 

minimize resistive losses and enhance reaction efficiency. Intelligent power management 

systems will be developed to dynamically adjust power allocation based on real-time solar 

conditions, ensuring consistent hydrogen production. Additionally, heat management and 

recovery mechanisms will be explored to improve long-term system stability and 

efficiency. Scaling the system to pilot and industrial levels will be prioritized, with 

integration into microgrid networks and hybrid renewable energy systems. 
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NOMENCLATURE 

 

Ipv Output current of the photovoltaic cell 

Iph Photocurrent generated by incident light 

Id Diode current 

Ish Shunt current 

Rs Series resistance of the PV cell 

Rsh Shunt resistance of the PV cell 

Vcell Voltage across the PV cell 

VOC Open-circuit voltage of the PV cell 

Vt Thermal voltage 

Ncs Ideality factor of the diode Ncs 

P Pressure of hydrogen gas 

VH2 Volume of hydrogen produced 

R Universal gas constant 

T Temperature during electrolysis 

Isc Short-circuit current of the PV module 

Pmax Maximum power delivered to the electrolyzer 



 
 

International Journal of Energy Efficiency Engineering (IJEEE)  
Volume 1, Issue 1 (May 2025), Pages 65-93 
 
 
 

Page 89 

 

H2 Hydrogen gas output 
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