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Introduction
Experimental and theoretical studies involving both linear chain and polycyclic
aromatic hydrocarbon (PAH) anions in the interstellar medium (ISM) have
continued to be a subject of attention by many computational and experimental
researchers due to their closed-shell structure that often result in the formation of
anionic resonant structures and reactive neutral radicals upon ultraviolet (UV)
photodetachment.1-5 The recent detection of benzonitrile as the first aromatic
molecule in the cold-core Taurus Molecular Cloud 1 (TMC-1) has particularly
elicited several theoretical investigations aimed at elucidating not only the nature
and structure of the dipole-bound anionic states, but also the accurate
determination of the adiabatic electron affinity (EA) along with other
thermochemical values.6-8 The present work builds upon previous studies on the
bare benzonitrile anion6-9 to provide further insights on the nature of the vibrational
structure of the neutral radical that arise from the more stable deprotonated ortho,
meta, and para benzonitrile isomer.

Research Goals
 Utilize density functional theory (DFT) quantum mechanical techniques to

calculate the electron affinities (EAs) and gas-phase acidities (GPAs) of the
neutral deprotonated radical and the parent molecule, respectively.

 Use the negative ion thermochemical cycle to estimate the C-H bond
dissociation energies for the parent o-, m-, and p-C6H5(CN) isomers.

 Utilize the Pescal program to calculate the Franck-Condon (FC) factors of
o-, m-, and p-C6H4(CN) to dermine the active vibrational modes.

Results and Discussion

Figure 2: The optimized 
structures of BN with 
labeled deprotonation sites

Figure 3: Negative Ion Thermochemical Cycle for BN 
used to estimate bond dissociation energies

Future Directions
 Complete the Franck-Condon simulations for p-C6H4(CN) and complete a

vibrational analysis at 0K and 300K.
 Repeat this process for dicyanobenzene isomers.
 Negative ion mass spectrometry experimental studies will be performed to

confirm the formation of deprotonated anionic isomers in the gas-phase under
different collision energies.

 Investigate the solution effects on the formation of benzonitrile radical anions
on the basis of cyclic voltammetry analysis.15
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Methods
 DFT calculations using the Gaussian 09 program package at the aug-cc-

pVQZ level of theory were used to calculate the EAs of the deprotonated
neutral radical and GPAs of the parent molecule.

 The negative ion thermochemical cycle (Figure 3) was then utilized to obtain
the C-H bond dissociation energies.

 PESCAL program was used to obtain Franck-Condon profiles of
deprotonated benzonitrile anionic isomers.13

 PESCAL calculated the Franck-Condon-Factors (FCFs) by utilizing a
harmonic oscillator approximation including Duschinsky rotation with the
Sharp-Rosenstock-Chem method.14

Figure 4: Franck-Condon simulations of BN deprotonated at location 1 at 0K and 300K 

Figure 5: Franck-Condon simulations of BN deprotonated at location 2 at 0K and 300K 
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Table 1: Summary of DFT calculated electron affinities, GPAs (∆acidH298 (kJmol-1)) and dissociation
energies (D298(H-C6H4CN−H)) for the BN isomers at 298K. For comparison, benzene values are
given below.

For Comparison: In benzene
 GPA (∆acidH298) =1678.7 ± 2.1 kJ mol-1 (Davico et al., J. Am. Chem. Soc., 1995, 117, 9, 2590)
 D298(C6H5−H) = 472.1 ± 2.5 kJ mol-1 ( Alecu et al; J. Phys. Chem. A, 2007, 111, 19, 3970) 

Franck-Condon Analysis
Figure 4 shows the calculated negative ion photoelectron spectra of the ortho-
deprotonated isomer at both 0 K and 300 K.
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Electron Affinity (EA)

 Extensive vibrational progressions at both temperatures are due to the large
geometry change that takes place upon photodetachment.

 As expected, the 0 K spectrum shows less congestion and more defined peaks
 Vibrational progression resulting from exciting ring deformation vibrational

modes are identified as follows:
165 cm-1 low freq (butterfly), ~ 456 cm-1 ring deformation, ~ 633 cm-1 ring
deformation, ~ 1000 cm-1 ring deformation, ~ 1600 cm-1 combination bands
(specifics are unclear)

 The simulated spectra of m-C6H4(CN) can be seen in Figure 5, but an in-depth
vibrational analysis has not yet been completed.

 Work is ongoing on the para isomer.
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Negative Ion Photoelectron Spectroscopy

A large geometry change leads to an 
extensive vibrational progression

A small geometry change with a clear 
origin

AB- + hν  AB + e-

What the technique can measure:
 Electron Affinity (EA)

 Vibrational Frequencies, ωe

 Neutral Excited States:

 All above properties plus term energy, T0

 Geometry Change, ΔR, between the anion and 
the radical

Depending on the photon energy, one can 
access higher electronic states

eBE = hν - eKE

Figure 1: Potential energy profile in negative ion photoelectron spectroscopy
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