Anion Photoelectron Spectroscopy and Thermochemistry of Deprotonated Benzonitrile Isomers

Rebecca Firth¹, Taylor Dimino^{2*}, and Wilson Gichuhi¹, ¹Chemistry and ²Chemical Engineering Departments, Tennessee Tech University Cookeville, TN

Introduction

Experimental and theoretical studies involving both linear chain and polycyclic aromatic hydrocarbon (PAH) anions in the interstellar medium (ISM) have continued to be a subject of attention by many computational and experimental researchers due to their closed-shell structure that often result in the formation of anionic resonant structures and reactive neutral radicals upon ultraviolet (UV) photodetachment.¹⁻⁵ The recent detection of benzonitrile as the first aromatic molecule in the cold-core Taurus Molecular Cloud 1 (TMC-1) has particularly elicited several theoretical investigations aimed at elucidating not only the nature and structure of the dipole-bound anionic states, but also the accurate determination of the adiabatic electron affinity (EA) along with other thermochemical values.⁶⁻⁸ The present work builds upon previous studies on the bare benzonitrile anion⁶⁻⁹ to provide further insights on the nature of the vibrational structure of the neutral radical that arise from the more stable deprotonated ortho, meta, and para benzonitrile isomer.

Research Goals

- \succ Utilize density functional theory (DFT) quantum mechanical techniques to calculate the electron affinities (EAs) and gas-phase acidities neutral deprotonated radical and the parent molecule, respectively
- Use the negative ion thermochemical cycle to estimate dissociation energies for the parent o-, m-, and $p-C_6H_5(CN)$
- Utilize the Pescal program to calculate the Franck-Condon (FC) factors of o-, m-, and $p-C_6H_4(CN)$ to dermine the active vibrational modes.

Methods

- \succ DFT calculations using the Gaussian 09 program package at the aug-ccpVQZ level of theory were used to calculate the EAs of the deprotonated neutral radical and GPAs of the parent molecule.
- \succ The negative ion thermochemical cycle (Figure 3) was then utilized to obtain the C-H bond dissociation energies.
- > PESCAL program was used to obtain Franck-Condon profiles of deprotonated benzonitrile anionic isomers.¹³
- \succ PESCAL calculated the Franck-Condon-Factors (FCFs) by utilizing a harmonic oscillator approximation including Duschinsky rotation with the Sharp-Rosenstock-Chem method.¹⁴

Negative Ion Photoelectron Spectroscopy

Figure 1: Potential energy profile in negative ion photoelectron spectroscopy

Figure 2: The optimized structures of BN with labeled deprotonation sites

$D_0(C_6H_5CN) = \Delta_{acid}H^{\circ}_{298K}(C_6H_5CN) + EA(C_6H_4CN^{\bullet}) - IE(H)$ Figure 3: Negative Ion Thermochemical Cycle for BN

Table 1: Summary of DFT calculated electron affinities, GP energies $(D_{298}(H-C_6H_4CN-H))$ for the BN isomers at 298k given below.

of the						
ectively.						
bond						
isomers.						

For Comparison: In benzene

> GPA ($\Delta_{acid}H_{298}$) =1678.7 ± 2.1 kJ mol⁻¹ (Davico et al., **J. Am. Chem. Soc.**, 1995, 117, 9, 2590) $D_{298}(C_6H_5-H) = 472.1 \pm 2.5 \text{ kJ mol}^{-1}$ (Alecu et al; **J. Phys. Chem. A**, 2007, 111, 19, 3970)

Franck-Condon Analysis

Figure 4 shows the calculated negative ion photoelectron spectra of the orthodeprotonated isomer at both 0 K and 300 K.

Figure 4: Franck-Condon simulations of BN deprotonated at location 1 at 0K and 300K

 \succ Extensive vibrational progressions at both temperatures are due to the large geometry change that takes place upon photodetachment.

 \succ As expected, the 0 K spectrum shows less congestion and more defined peaks \succ Vibrational progression resulting from exciting ring deformation vibrational modes are identified as follows:

165 cm⁻¹ low freq (butterfly), ~ 456 cm⁻¹ ring deformation, ~ 633 cm⁻¹ ring deformation, ~ 1000 cm⁻¹ ring deformation, ~ 1600 cm⁻¹ combination bands (specifics are unclear)

Results and Discussion

C_6H_5CN

used to estimate bond dissociation energies

PAs	$\delta (\Delta_{\epsilon}$	H_{298}	(kJmo	ol⁻¹)) and (dissocia	tion
K.	For	compa	arison,	benzene	values	are

	Dissociation Energy (kJ/mol)					
-cc-pVQZ	6-311	aug-cc-pVQZ				
1.901	470.1	471.3				
1.778	465.8	467.0				
1.788	465.0	466.2				

- vibrational analysis has not yet been completed.
- \succ Work is ongoing on the para isomer.

Future Directions

- vibrational analysis at 0K and 300K.
- \succ Repeat this process for dicyanobenzene isomers.
- different collision energies.
- on the basis of cyclic voltammetry analysis.¹⁵

References

- **2012**, *422*, (4), 3643-3648.
- A **2015**, *119*, (39), 9941-9953.

- Astrophysical Journal **2010**, 723, (2), 1325-1330.

- The Journal of Physical Chemistry **1975**, 79, (12), 1161-1169.
- *Chem* **2004**, *25*, (11), 1342-6.
- (5), 533-540.
- **2017**, *146*, (7), 074302.
- 134, (18), 184306.

Acknowledgements

The authors thank Dr. Derek Cashman, Gene Mullins, TN Tech Chemistry Department, TN Tech Supercomputing, and the Creative Inquiry Summer Experience (CISE) Grant Program for assisting with this project.

 \succ The simulated spectra of m-C₆H₄(CN) can be seen in Figure 5, but an in-depth

 \succ Complete the Franck-Condon simulations for $p-C_{\beta}H_{4}(CN)$ and complete a

 \succ Negative ion mass spectrometry experimental studies will be performed to confirm the formation of deprotonated anionic isomers in the gas-phase under

 \succ Investigate the solution effects on the formation of benzonitrile radical anions

1) Carelli, F.; Gianturco, F.A., Polycyclic aromatic hydrocarbon negative ions in interstellar clouds: a quantum study on coronene metastable anions. *Monthly Notices of the Royal Astronomical Society*

2) Fortenberry, R. C., Interstellar Anions: The Role of Quantum Chemistry. Journal of Physical Chemistry

3) Buragohain, M.; Pathak, A.; Sarre, P.; Gour, N. K., Interstellar dehydrogenated PAH anions: vibrational spectra. Monthly Notices of the Royal Astro. Society 2017, 474, (4), 4594-4602.

4) Etim, E. E.; Gorai, P.; Ghosh, R.; Das, A., Detectable interstellar anions: Examining the key factors. Spectrochimica Acta Part A: Mol. and Biomol. Spectroscopy 2020, 230, 118011.

5) Yang, Z.; Eichelberger, B.; Carpenter, M. Y.; Martinez, O.; Snow, T. P.; Bierbaum, V. M., Experimental and Theoretical Studies of Reactions between H atoms and Carbanions of Interstellar Relevance. *The*

6) Dixon, A. R.; Khuseynov, D.; Sanov, A., Benzonitrile: Electron affinity, excited states, and anion solvation. The Journal of Chemical Physics 2015, 143, (13), 134306.

7) Gulania, S.; Jagau, T.-C.; Sanov, A.; Krylov, A. I., The quest to uncover the nature of benzonitrile anion. Physical Chemistry Chemical Physics 2020, 22, (9), 5002-5010.

8) Santaloci, T. J.; Fortenberry, R. C., Electronically Excited States of Closed-Shell, Cyano-

Functionalized Polycyclic Aromatic Hydrocarbon Anions. Chemistry 2021, 3, (1), 296-313.

9) Wentworth, W. E.; Kao, L. W.; Becker, R. S., Electron affinities of substituted aromatic compounds.

10)Wiberg, K. B., Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. J Comput

11)Bauschlicher, C. W.; Partridge, H., The sensitivity of B3LYP atomization energies to the basis set and a comparison of basis set requirements for CCSD(T) and B3LYP. Chemical Physics Letters 1995, 240,

12)Nelson, D. J.; Gichuhi, W. K.; Miller, E. M.; Lehman, J. H.; Lineberger, W. C., Anion photoelectron spectroscopy of deprotonated ortho-, meta-, and para-methylphenol. The Journal of Chemical Physics

13)Vogelhuber, K. M.; Wren, S. W.; McCoy, A. B.; Ervin, K. M.; Lineberger, W. C., Photoelectron spectra of dihalomethyl anions: Testing the limits of normal mode analysis. Journal of Chemical Physics 2011,

14)Luis, J. M.; Bishop, D. M.; Kirtman, B., A different approach for calculating Franck–Condon factors including anharmonicity. The Journal of Chemical Physics 2004, 120, (2), 813-822. 15)Vessecchi, R.; Naal, Z.; Lopes, J. N. C.; Galembeck, S. E.; Lopes, N. P., Generation of

Naphthoquinone Radical Anions by Electrospray Ionization: Solution, Gas-Phase, and Computational Chemistry Studies. The Journal of Physical Chemistry A 2011, 115, (21), 5453-5460.