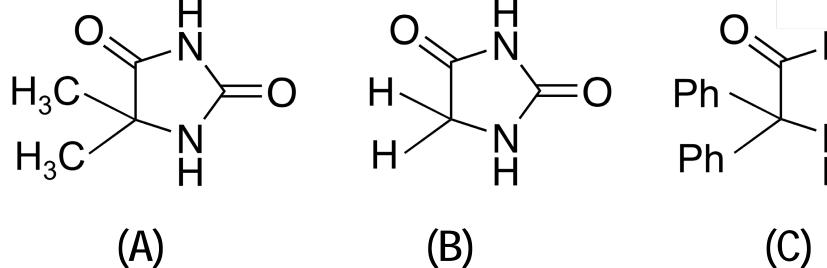
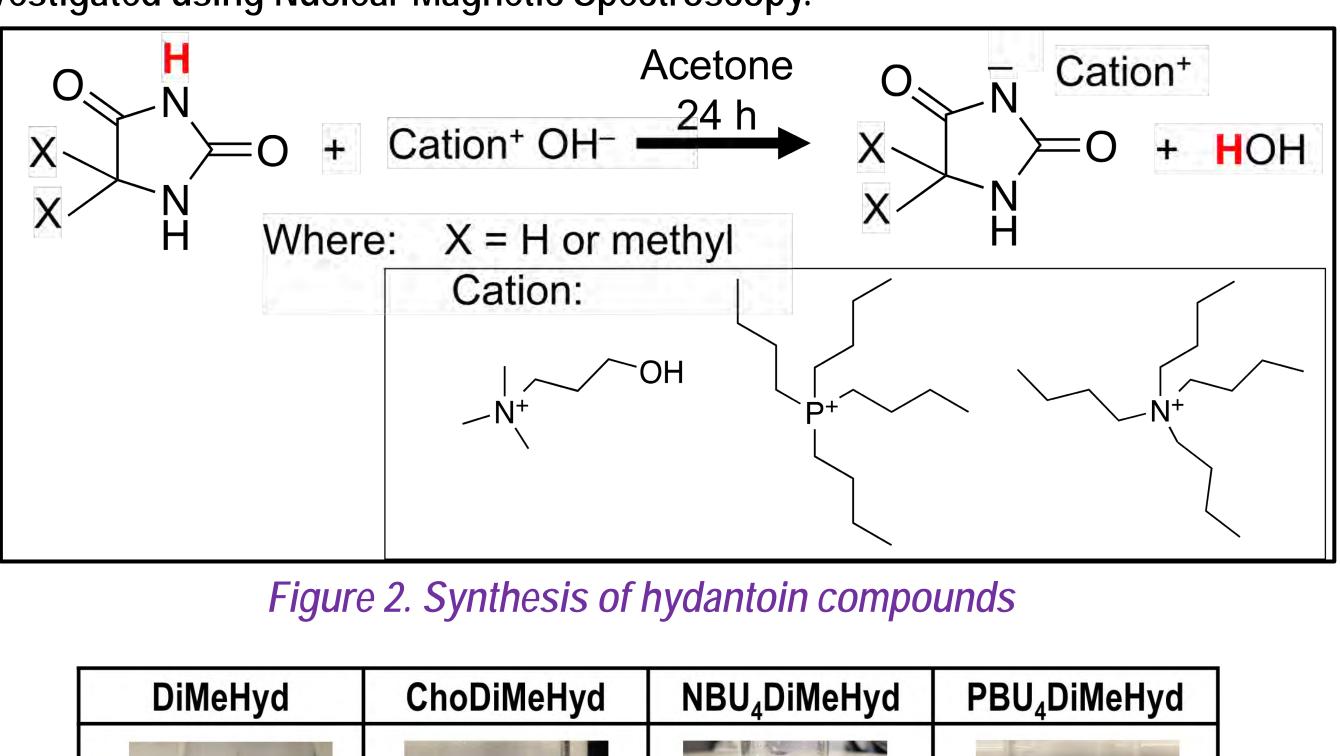


Introduction

- Hydantoin scaffolds are present in many antiseizure, antiviral, anticonvulsant, or antiulcer medications. Their topical applications have shown promise in treating chronic wounds.
- As with more drugs, hydantoin drugs are commonly found in a solid state and exhibit polymorphism (the existence of multiple crystalline structures) which decreases their pharmaceutical efficacy. By converting these solid-state drugs into a liquid state (ionic liquids), polymorphism can be prevented, and the new compounds can be used in developing new delivery strategies for hydantoin drugs.
- Hydantoin drugs are ideal anion precursors: they exist as either ionic (sodium salts) or neutral acidic compounds (which can be deprotonated to form the corresponding ionic form).




Figure 1. Hydantoin compounds: (A) 5,5-dimethyl hydantoin; (B) Hydantoin; (C) Phenytoin

Objective

The focus of this study was to investigate the solubility of ionic-liquid state hydantoin drugs through the determination of the octanol-water partition coefficient (K_{ow}).

Synthesis

Dimethyl hydantoin (Figure 1) was reacted through acid-base reactions (Figure 2) with three cation sources, namely choline hydroxide (Cho OH), tetrabutylphosphonium hydroxide (PBu₄ OH), and tetrabutylammonium hydroxide (NBu₄ OH), in a 1:1 stoichiometric ratio. These reactions were carried out in acetone at room temperature and stirred for 24 hours. The remaining solvent and water product were removed using a Rotovap. As a result, three compounds, nearly colorless or highly viscous compounds, were obtained. The identity of the resulting liquid state compounds was investigated using Nuclear Magnetic Spectroscopy.

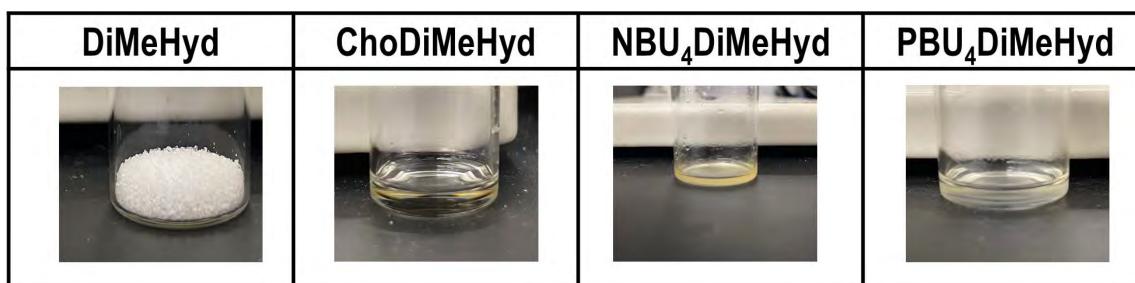
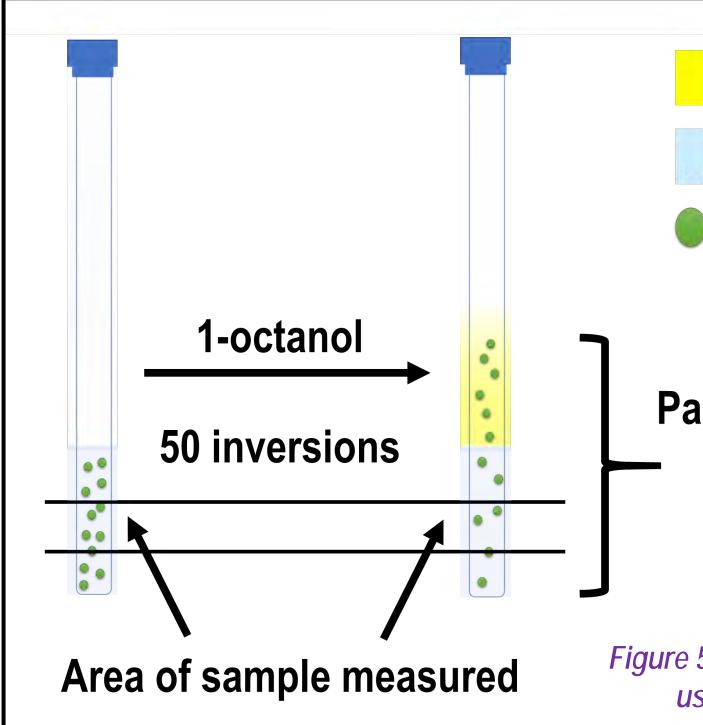


Figure 3. Liquid state dimethylhydantoin compounds

Utilizing ¹H-NMR Spectroscopy to Measure the **Octanol-Water Partition Coefficient of Hydantoin Compounds**

Brayden C. Copeland and O. Andreea Cojocaru Department of Chemistry, Tennessee Technological University, Cookeville, TN


¹H-NMR Spectroscopic Characterization

- 0.058 M dmso-d6 solutions.

 - increase in electron density on the hydantoin ring.

Octanol-Water Partition Coefficient

- The samples were allowed to phase separate for approximately one hour.
- equilibrium with 1-octanol (RI_w^{equilibrium})

Conclusions

- The method is not suitable for the more hydrophilic compounds, Me_2Hyd and Cho Me_2Hyd ($K_{OW} < 0$) BUT it is suitable for the more hydrophobic compounds, NBu₄ Me₂Hyd and PBu₄ Me₂Hyd (K_{OW} > 0)
- NBu₄ Me₂Hyd and PBu₄ Me₂Hyd: log K_{OW} < 0 \rightarrow higher affinity for H₂O phase
- Outliers still present in the obtained data (2/5 for NBu₄ Me₂Hyd and 2/5 for PBu₄ Me₂Hyd)

References

(1) <u>https://kuscholarworks.ku.edu/bitstream/handle/1808/1175/SC08_R_Prankerd.pdf;sequence=1</u>. Last Accessed 09/06/21. (2) Shaw, J.; Hughes C.M.; Lagan K.M.; Bell P.M.; The clinical effect of topical phenytoin on wound healing: a systematic review. British Journal of Dermatology. 2007, 997-1004. DOI: 10.1111. (3) Cumming H.; Rücker C.; Octanol-Water Partition Coefficient Measurement by a Simple ¹H-NMR Method. ACS Omega. 2017, 2, 9, 6244-6249

The identity of these products was confirmed using nuclear magnetic resonance (NMR) spectroscopy. ¹H-NMR spectra for dimethyl all compounds was collected for

The most acidic hydrogen peak (H present on the N atom connected to the two carbonyl groups) from hydantoin starting materials is not present in the products

The next most acidic peak (H present on the N atom connected to only one carbonyl group) is shifted to lower ppm values in all the synthesized compounds. This is consistent with the removal of the most acidic hydrogen and with an

> Figure 4. ¹H-NMR characterization of hydantoin (left) and dimethylhydantoin (right) compounds

Each sample was prepared in a 0.01 M concentration and dissolved in 500 μ L water (OptimaTM LC/MS Grade). ¹H-NMR spectrum of each sample was obtained using a coaxial tube containing D_2O as the internal standard ar used to determine the relative ¹H-NMR peak integration of analyte in H₂O (RI_W^{initial})

 $500 \ \mu L$ 1-octanol was added to each tube and inverted approximately 50 times.

A final ¹H-NMR spectrum was obtained to determine the relative ¹H-NMR peak integration of analyte in H_2O after

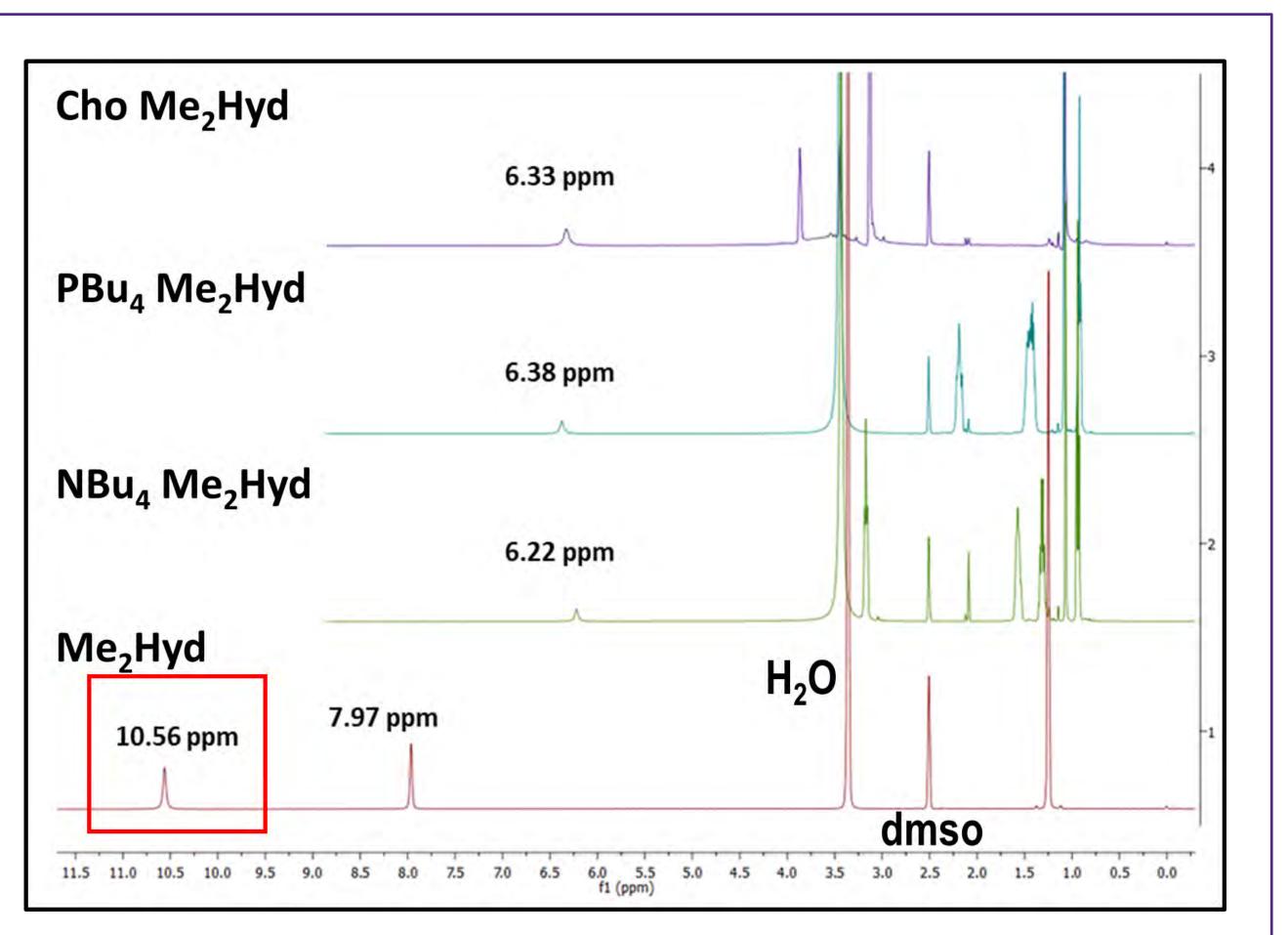
1-octanol layer

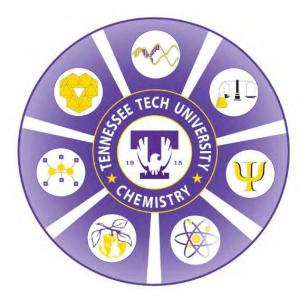
- water layer
- analyte

Partition between 1-octanol and water

Figure 5. Experimental procedure used to determine K_{OW}

RI_W^{initial} – RI_W^{equilibrium} **RI**_Wequilibrium


K_{OW} = octanol-water partition coefficient $RI_{W}^{initial}$ = relative NMR peak integration of analyte before equilibrium $RI_{W}^{equilibrium} = relative NMR peak integration of ana$ H₂O after equilibrium with 1-octanol


log K_{OW} < 0: higher affinity for H_2O (more hydroph $\log K_{OW} > 0$: higher affinity for 1-octanol (more lip)

Future Work

- of inversions (*e.g.*, 75 vs. 50)

Table 1. K_{ow} and log K_{ow}

and		Sample #	K _{ow}	log K _{ow}
er	Me₂Hyd	1	-0.12092	_
		2	-0.61579	1
		3	I	-
		4	-0.62044	1
		5	-0.68465	_
	NBu ₄ Me ₂ Hyd	1	0.17856	-0.74821
		2	0.10442	-0.98120
		3	0.03605	-1.44304
		4	0.18746	-0.72708
		5	0.19142	-0.71800
e in H ₂ O	PBu ₄ Me ₂ Hyd	1	0.57602	-0.23956
· · · · · 2 ·		2	0.26965	-0.56920
alyte in		3	—	_
		4	0.19526	-0.70938
		5	0.27891	-0.55452
ohilic) oophilic)	Cho Me ₂ Hyd	1	-0.01537	-
		2	-0.05336	-
		3	_	-
		4	-0.05290	-
		5	-0.07592	-

To decrease the number of outliers, re-assessing the hydrophilicity of the synthesized compounds by using a higher number of samples (e.g., 10 vs. 5) and a higher number

Investigating the thermal behavior of the synthesized hydantoin derivatives using Thermal Gravimetric analysis (TGA, for determining the decomposition temperatures) and Differential Scanning Calorimetry (DSC, for determining melting points) Investigating the transdermal delivery potential of the synthesized compounds

Acknowledgement:

The NSF MRI 1531870 Grant used to purchase the 500 MHz Bruker NMR spectrometer available in the Chemistry Department from Tennessee Tech University.