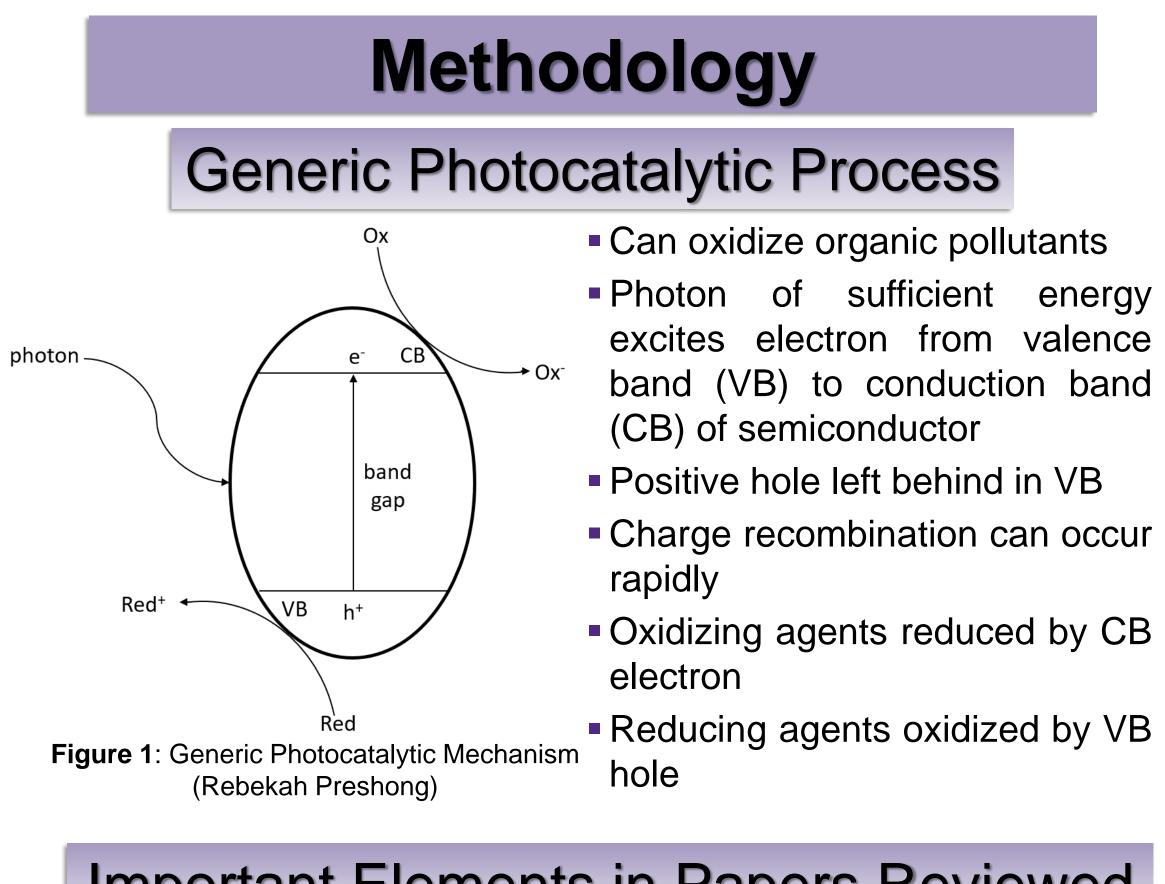


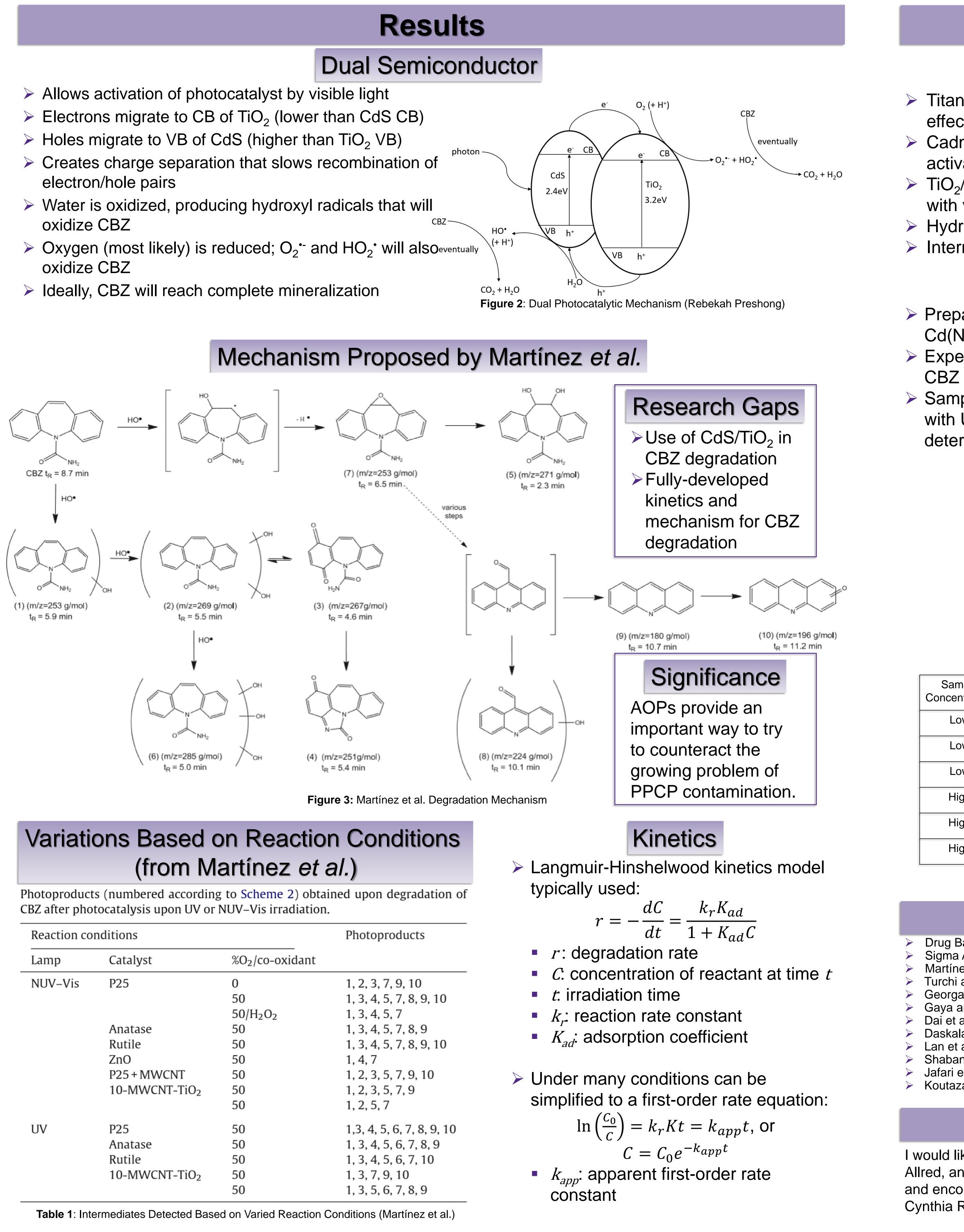
Introduction


Pharmaceuticals and personal care products (PPCPs) cannot be degraded by traditional methods of wastewater treatment, leading to contamination in groundwater and even drinking water and posing potential harm to people and to aquatic life. Photocatalytic degradation is an advanced oxidation process (AOP) that may provide an effective method for breaking down these substances. This research examines the degradation of carbamazepine (CBZ), a model PPCP, by titanium dioxide (TiO₂) and cadmium sulfide (CdS).

Carbamazepine, a Model PPCP

C₁₅H₁₂N₂O • 236.269 g/mol MP: 191-192°C

Biological half-life: 25-65 hours (initial), 12-17 hours (repeated doses)


- \succ Used to treat epilepsy, seizures, neuralgia, etc.
- > Like other PPCPs, has high affinity for aqueous phase
- > Detected in municipal wastewater, groundwater, seawater, and even drinking water
- \succ For example, was found at concentrations up to 1075 ng/L in surface water in Berlin

Important Elements in Papers Reviewed

- > Titanium dioxide photocatalysis
- \succ Degradation mechanisms (esp. of CBZ with TiO₂)
- \succ Modified TiO₂ photocatalysts (esp. TiO₂/CdS)
- Effect of UV vs. UV-Vis light
- Importance of hydroxyl radicals
- Kinetic analysis

- electron/hole pairs
- oxidize CBZ
- oxidize CBZ

Reaction co	nditions	Photoproducts	
Lamp	Catalyst	%O ₂ /co-oxidant	
NUV-Vis	P25	0	1, 2, 3, 7, 9, 10
		50	1, 3, 4, 5, 7, 8, 9, 10
		50/H ₂ O ₂	1, 3, 4, 5, 7
	Anatase	50	1, 3, 4, 5, 7, 8, 9
	Rutile	50	1, 3, 4, 5, 7, 8, 9, 10
	ZnO	50	1, 4, 7
	P25 + MWCNT	50	1, 2, 3, 5, 7, 9, 10
	10-MWCNT-TiO ₂	50	1, 2, 3, 5, 7, 9
		50	1, 2, 5, 7
UV	P25	50	1,3, 4, 5, 6, 7, 8, 9, 10
	Anatase	50	1, 3, 4, 5, 6, 7, 8, 9
	Rutile	50	1, 3, 4, 5, 6, 7, 10
	10-MWCNT-TiO ₂	50	1, 3, 7, 9, 10
		50	1, 3, 5, 6, 7, 8, 9

TiO₂/CdS Photocatalytic Degradation of Carbamazepine

Rebekah Preshong, Kristina Jevtic, Nastasia Allred, Dr. Pedro Arce Department of Chemical Engineering

Conclusions

Brief Summary

 \succ Titanium dioxide (TiO₂): Inexpensive; non-toxic; effective; activated only by UV light

Cadmium sulfide (CdS): Smaller bandgap; can be activated by visible light

 \geq TiO₂/CdS: Use of effective TiO₂ and activation with visible light

Hydroxyl radicals: essential in CBZ degradation Intermediates: vary with reaction conditions

Proposed Experiment

 \geq Preparation of dual photocatalyst from Na₂S, $Cd(NO_3)_2$, and TiO_2

 \succ Experiments run with various catalyst loadings, CBZ concentrations, and types of irradiation

Samples collected every 5 minutes and analyzed with UV-Vis spectrophotometer at 284nm to

determine CBZ degradation

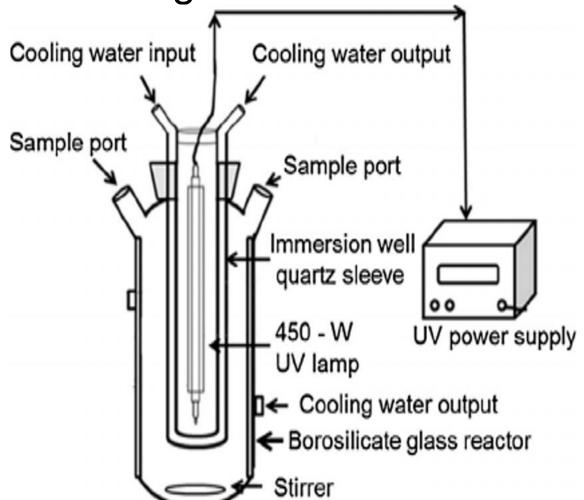


Figure 4: Reactor to Be Used (Koutazadeh et al.)

mple ntration	Amount of CBZ, ppm	PC Loading, mg/L	Irradiation Source	Irradiation Time, min
ow	5	50	UV, Vis	45
ow	5	250	UV	45
OW	5	500	UV, Vis	45
igh	250	50	UV, Vis	45
igh	250	250	UV	45
igh	250	500	UV, Vis	45

Table 2: Proposed Experimental Conditions (Kristina Jevtic)

References

Drug Bank https://www.drugbank.ca/drugs/DB00564 Sigma Aldrich Safety Data Sheet (<u>https://www.sigmaaldrich.com/</u>) Martínez et al, Appl. Catal., B **102** 3-4 (2011) 563 Turchi and Ollis, J. Catal. **122** 1 (1990) 178 Georgaki et al., Am. J. Analyt. Chem. **5** 8 (2014) 518 Gaya and Abdullah, J. Photochem. Photobiol., C 9 1 (2008) 1 Dai et al., Environ. Technol. **33** *10* (2012) 1101 Daskalaki et al., Environ. Sci. Technol. 44 19 (2010) 7200 Lan et al., Nano Energy **2** 5 (2013) 1031 Shaban, Modern Research in Catalysis 2 (2013) 6 Jafari et al., Molecules **21** 7 (2016) 900 Koutazadeh et al., J. Water Process Eng. 10 (2016) 1

Acknowledgements

I would like to thank Dr. Pedro Arce, Kristina Jevtic, Nastasia Allred, and Sunil Rawal for their guidance, assistance, advice, and encouragement. I also appreciate Holly Mills and Dr. Cynthia Rice helping me edit this poster.