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ABSTRACT D

* Insider threats such as sabotage, theft, espionage, fraud and competitive - - sends

advantage are accomplished by abusing access to the organization's network,
system or data, theft of materials and mishandling of physical devices and geeetves —during @ES SA@

negatively affects the confidentiality, integrity or availability of the @ @ @ @
. . . . state receives

organization’s information system.

* We try to 1dentify anomalous insider activity which can be malicious 1n the @ Qeekdaa @CEIVE)

email communication of the organization.

*  We use graph mining approach that incorporates the time element of the
email communication to 1dentify these anomalous instances. Figure 1: Graph representation of email communication Figure 4: Normative Pattern from Sampled Graph

RESEARCH OBJECTIVE

EXPERIMENTAL SETUP

* The aim of this work 1s to mine the graph that represents email « Convert the parsed graph into a graph stream
communication in an organization to identify suspicious activities in the Mine th dontify th . L i sends
communication. 1ne the stream to 1dentily the suspicious activities
* Uses window-based approach @E PRESID@ -
INSID ER THRE AT S * Creates a “scaled-down” sample

* .
* Identify anomalies 1n the sampled graph for each window state durlng recelves

* Threats from authorized users:  Sample Size: 16% of original graph @ @ " late mght

* Compromise the network  For different components: Graph Parser, Graph Stream Generator, Graph
. . . . . ; . . 1 1S

 Deliberate malicious exploitation or destruction of data Sampler, and Graph Based Anomaly Detection Tool!" :
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* Different strategies available to tackle R Figure 5:Suspicious activity with respect to the time element
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Figure 2: Experimental Setup Architecture Figure 3: Intelligent-PIES

* Do not use referenceinfo table

EXP ERIMENTAL RE SULT S * Integrate the sentiment of the email content into the graph

* Identify suspicious activity from the email content

* Added a fifth table, link forwarded message which links the forwarded » Able to detect 3 different anomalous instances
message to 1ts original message.

* Perform experiments on different sample size to 1identify the tradeoff between
* Identified suspicious activity of “vice-president” of the company sending processing time and loss 1n accuracy

* Divided the timestamp of email communication into date and time email to the “in-house lawyer” at an unusual time, 1.e. late at night (around
component. 4 1n the mommg).
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