Introduction

ennessee

Traffic Monitoring Program

TECH

- Federal funds for highway transportation allocated to states based on highway usage. The key parameter for determining highway usage is the annual average daily traffic (AADT).
 - AADT is the average traffic that uses a section of highway on a typical day of the
- Every State Department of Transportation (DOT) is required to estimate the AADT for each section of roadway in their network.
- Scale of task is immense; hence, AADT estimation procedure uses statistical sampling.
- Sampling procedure results in two count programs: a permanent traffic count (PTC) program and a short-period traffic count (SPTC) program.

PTC Program

- Small number of road sections in each roadway functional class group selected
- Traffic on these sections monitored continuously all year round
- PTC volumes used to determine AADTs for development of: Seasonal factors (SFs)
- Annual growth factors (GFs)

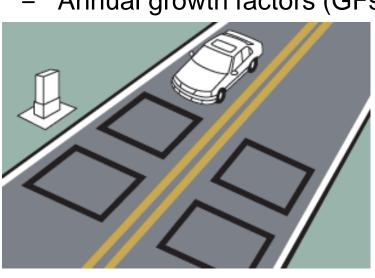


Figure 1. PTC Station Figure 2. Inductive Loop Detector

SPTC Program

- Conducted on all other roadway sections in the state
- Counts undertaken for a short duration
 - Typically 48 hours - Some 24 hours
- SPTCs converted to AADT using SFs from PTC stations



Figure 3. SPTC Station

Figure 4. Pneumatic Road Tube

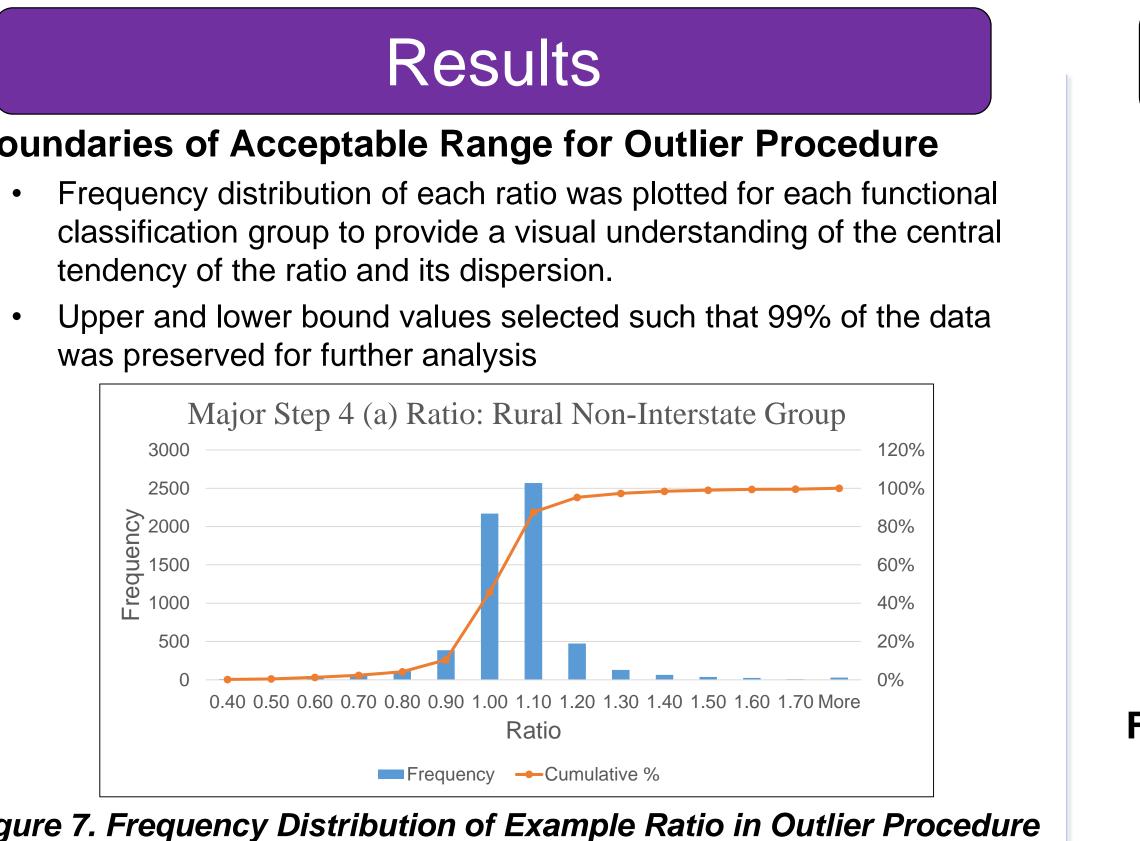
Review of State Traffic Monitoring Guides and Interviews

- Key aspects of the PTC and SPTC programs were reviewed.
- Notable differences among the states in methodologies

 Quality control checks – SF and GF computations - SPTC durations and cycles

Table 1. State SPTC Durations/Cycles				
SPTC Duration/Cycle				
24 hours/1 year				
FHWA (48 hours/3 years)				
24 or 48 hours/3 years				
48 hours/2 or 4-6 years				
24 hours/2 or 4-5 years				
FHWA (48 hours/3 years)				
FHWA (48 hours/3 years)				
48 hours/1 year				
48 hours/1 or 2 years				
24 hours/1 or 5 years				
48 or 72 hours/3 years				
FHWA (48 hours/3 years)				
FHWA (48 hours/3 years)				

- Lack of research on count-duration/count-cycle and their relationship to accuracy of AADT estimates
- Procedure required in Tennessee for identifying outlier volumes to improve on quality of data used in estimating AADT


Research Objectives

- **<u>Objective 1</u>**: Develop a procedure, rooted in statistics, for identifying and deleting outlier daily volume records before the computation of SFs.
- **Objective 2:** Investigate two alternative count-duration/count-cycle schemes to determine which yields more accurate estimates of the AADT. One scheme is employed by Tennessee and the other is recommended by FHWA.
- 24 hours every year Tennessee Department of Transportation (TDOT)
- 48 hours every 3 years FHWA

Improving Accuracy of Annual Average Daily Traffic Estimates from Short-Period Traffic Counts Michelle L. Edwards and Daniel A. Badoe

Data and Methodology
a Required and Available
Daily traffic volumes collected by TDOT for years 2010 to 2015
 Associated month and day-type were assigned to each volume
63 PTC stations (only 10 stations across 11 years, had all 365 day
 Functional class groups Recreational (2); rural interstate (5); rural non-interstate (20); urban interstate (9); urban non-interstate (27)
ulation of AADT and SFs
American Association of State Highway and Transportation Officia
(AASHTO) method, or the average of averages method $\sqrt{2} \left[\frac{7}{4} \frac{12}{4} \left(\frac{n}{4} \right) \right]$
$AADT = \frac{1}{7} \sum_{i=1}^{7} \left[\frac{1}{12} \sum_{i=1}^{12} \left(\frac{1}{n} \sum_{k=1}^{n} V_{ijk} \right) \right]$
SFs were developed by indexing monthly day-types to AADT and
then applied to a 24-hour volume count to estimate the AADT at a
station for a given year. $SF_{ij} = \frac{AADT}{\overline{V}_{ij}}$ $\widehat{AADT}^y = V_{24ij} * SF_{ij}$
ier Identification and Removal Procedure (Objective 1
Quality of data resulted in atypical SFs
ajor Step 1: Deletion of volume records with a magnitude of zero
ajor Step 2: Arrange volumes from oldest year to most recent year
ajor Step 3: Check for reasonable growth in daily volumes
compute the ratio of previous year's AADT to each volume $LB < \frac{AADT^{y-1}}{V_{ijk}^{y}} < UB$ (xcept first year)
ratio falls outside of boundaries, <u>associated volumes are simultaneously deleted</u>
fore proceeding.
ajor Step 4: Flag questionable volumes for further scrutiny \bar{V}_{ij}^{y}
) Compute ratio of yearly growth in average monthly day-type volume (except first year) $UB < \frac{V_{ij}}{\bar{V}_{ij}^{y-1}} < UB$
) Compute ratio of yearly dispersion in average monthly $LB < \frac{CV_{ij}^{y}}{CV_{ij}^{y-1}} < UB$
day-type volume (except first year) f either ratio falls outside of boundaries, <u>associated volumes are flagged for</u>
<u>rther analysis</u> .
ajor Step 5: Identification of which flagged volumes in Major Step 4 are to
e deleted) Compute ratio of current year average monthly day-type $LB < \frac{\bar{V}_{ij}^{y}}{V_{ijk}^{y}} < UB$
volume to each volume in same year (note. calculated
for each volume in first year)) Compute ratio of previous year average monthly $LB < \frac{\overline{V}_{ij}^{y-1}}{V_{ijk}^{y}} < UB$
day-type volume to each volume in same year (except first year) $LB < \frac{AADT^y}{V_{ijk}^y} < UB$
c) Compute the ratio of current year's AAD I to each volume 3^{n}
^f any of the ratios fall outside of boundaries, associated volumes are <u>flagged and</u> nultaneously deleted.
Figure 5. Outlier Identification and Removal Procedure
nt Duration/Cycle/GF Analysis of SPTCs (Objective 2)
tep 1: Select PTC group with complete SFs and station with available daily plumes for years 2013 to 2015
tep 2: Compute "true" AADT for years 1, 2, and 3
tep 3: Select month of the year and two consecutive days
ote: Tuesday through Thursday (consistent with TDOT)
4: 24-Hour/Evon
4: 24-Hour/EveryStep 5: 48-Hour/Every 3 Years Count Analysis• Use 48-hour count and SFs to estimate AADT for year
e 24-hour count d SF to estimate (average both estimated AADTs) $\widehat{AADT_i^{y=1}} = V_i * SF_{ij}$
DT for year 1 • Estimate GFs for years 2 and 3 $GF^{12} = \frac{AADT_T^{y=2}}{CF^{12}}$
peat for years 2 AADT_T^{J-1} d 3 • Apply GFs to estimate AADT for years 2 and 3
$\widehat{AADT_i^{\mathcal{Y}}} = V_i * SF_{ij}$ $\widehat{AADT_{i,i+1}^{\mathcal{Y}}} = A\widehat{ADT_{i,i+1}^{\mathcal{Y}}} * GF^{12}$
Exerce 6: Repeat Step 1 through Step 5 for all Tuesday, Wednesday, and
ep 6: Repeat Step 1 through Step 5 for all Tuesday, Wednesday, and hursday counts for all stations and PTC groups for years 2013 through 2015 ep 7: Compare which approach gives superior AADT estimates using mean

Figure 6. Count Duration, Cycle, and Growth Factor Analysis of SPTCs

Table 2 Roundaries of Accentable Panee for Computed Paties

Table 2. Boundaries of Acceptable Range for Computed Ratios						
Acceptable Lower Bounds and Upper Bounds for Computed Ratios						
Procedural Step:	Major	Major	Major	Major	Major	Major
	Step 3	Step 4 (a)	Step 4 (b)	Step 5 (a)	Step 5 (b)	Step 5 (c)
Ratio:	$AADT^{y-1}$	$ar{V}_{ij}^{\mathcal{Y}}$	$CV_{ij}^{\mathcal{Y}}$	$\bar{V}_{ij}^{\mathcal{Y}}$	\bar{V}_{ij}^{y-1}	AADT ^y
	V_{ijk}^{y}	$\overline{V_{ij}^{y-1}}$	$\overline{CV_{ij}^{y-1}}$	$\overline{V_{ijk}^{\mathcal{Y}}}$	$\overline{V_{ijk}^{y}}$	$V_{ijk}^{\mathcal{Y}}$
Recreational Group	0.40 - 4.00	0.90 - 1.10	0.00 - 2.25	0.25 - 2.50	0.25 - 2.50	0.40 - 4.00
Rural Interstate Group	0.40 - 2.40	0.90 - 1.10	0.00 - 2.25	0.25 - 2.50	0.25 - 2.50	0.40 - 2.40
ral Non-Interstate Group	0.40 - 2.80	0.90 - 1.10	0.00 - 2.25	0.25 - 2.50	0.25 - 2.50	0.40 - 2.80
Jrban Interstate Group	0.40 - 2.30	0.90 - 1.10	0.00 - 2.25	0.25 - 2.50	0.25 - 2.50	0.40 - 2.30
oan Non-Interstate Group	0.40 - 3.30	0.90 - 1.10	0.00 - 2.25	0.25 - 2.50	0.25 - 2.50	0.40 - 3.30

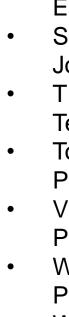
stimated SFs using Data after Deletion of Outliers Table 3. Initial (Final) Computed SFs for an Example PTC Station

Month/ Day-Type	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
nuary	1.42 (1.58)	0.97 (1.07)	0.92 (1.02)	0.97 (1.08)	0.85 (0.95)	0.76 (0.85)	1.02 (1.13)
bruary	1.30 (1.45)	0.82 (0.91)	0.79 (0.88)	0.84 (0.94)	0.79 (0.88)	0.70 (0.77)	0.93 (1.03)
arch	0.88 (0.98)	0.80 (0.89)	0.80 (0.89)	0.76 (0.84)	0.69 (0.77)	0.89 (0.99)	1.12 (1.24)
oril							
ay	26607.72	53215.44 ()	17738.48 ()	53215.44 ()	33259.65 ()	66519.30 ()	66519.30 ()
ine	1.56 (1.38)	1.14 (1.01)	1.24 (1.03)	1.03 (1.14)	0.86 (0.96)	0.78 (0.87)	0.99 (1.10)
ıly	1.29 (1.43)	0.90 (1.00)	0.89 (0.99)	0.88 (0.98)	0.84 (0.93)	0.86 (0.96)	1.02 (1.13)
ıgust	1.29 (1.43)	0.91 (1.01)	0.86 (0.96)	0.88 (0.97)	0.83 (0.92)	0.75 (0.83)	0.94 (1.05)
eptember	1.27 (1.41)	0.91 (1.01)	0.85 (0.94)	0.85 (0.94)	0.82 (0.91)	0.73 (0.81)	0.96 (1.06)
ctober	1.22 (1.35)	0.90 (1.00)	0.86 (0.96)	0.85 (0.94)	0.81 (0.90)	0.73 (0.81)	0.93 (1.03)
ovember	1.32 (1.46)	0.88 (0.97)	0.84 (0.94)	0.86 (0.95)	0.90 (1.00)	0.78 (0.87)	0.99 (1.10)
ecember	1.31 (1.46)	0.87 (0.97)	0.86 (0.96)	0.89 (0.99)	0.93 (1.03)	0.80 (0.88)	0.94 (1.04)

Iternative Growth Factor Development

Interest in alternative GF development that is averaged across all stations in each functional classification

$AADT_T^{y=2}$ Average GF^{12} $AADT_{T}^{y=1}$


ADT Estimation Error Results from SPTCs

able 4. Resulting Errors for Alternative SPTC Durations and Cycles Group-Averaged MAPE for AADT Estimates Obtained from

Alternative SPTC Durations and Cycles						
Functional		48-Hour with	48-Hour with Group-			
Classification	24-Hour	Individual GFs	Averaged GFs			
Rural Interstate	13.89%	9.77%	19.71%			
Rural Non-Interstate	9.78%	8.90%	10.70%			
Urban Interstate	10.04%	10.90%	15.68%			
Urban Non-Interstate	9.10%	6.64%	10.51%			

Discussion

Implementing the outlier identification and deletion procedure will ensure that the PTC data used by TDOT will be of better quality and will result in more accurate estimates of AADTs and SFs at the PTC stations and therefore AADT estimates at the SPTC stations. Conducting SPTCs for 48 hours every 3 years, compared to TDOT's current SPTC scheme, will not only result in more accurate AADT estimates but will also lead to significant reductions in the overall number of SPTCs conducted each year and in the staff-hours required for them.

Count duration and count cycle selected for the SPTC program of a state should be based on a thorough statistical analysis. This conclusion is motivated by the study results that show that AADT estimates based on a count duration of 48 hours on a 3-year cycle are more accurate than AADT estimates based on a count duration of 24 hours on a 1-year cycle.

Conclusions/Recommendations

• An outlier identification and deletion procedure, rooted in statistics, is critical to a state traffic monitoring program yielding credible results. It is critical to the quality of AADTs estimated at PTC stations and to the quality of SFs obtained.

Recommendations

- TDOT should conduct SPTCs every 3 years for 48 hours.
- State DOTs should improve upon the quality of volume data collected at PTC stations through well designed quality assurance procedures.

Future Work

Investigate which method of averaging multi-year SFs will produce more accurate estimates of AADTs

Use of simple average or AASHTO method for calculating AADT when data is missing

Micro-level analysis of outlier procedure using hourly data to identify atypical volumes before the deletion of daily volumes

AM/PM peak, by direction, by lane

References

Cambridge Systematics, Inc. 1995. TMS Algorithms. Cambridge Systematics, Inc. Cambridge Systematics, Inc. 2008. Update of Guidelines and Operating Procedures for the Traffic Census Program: Final Report. Prepared for Caltrans, Cambridge, Massachusetts: Cambridge Systematics, Inc.

Chen, Chin-Cheng, interview by Daniel Badoe. 2016. Review of State Traffic Monitoring Programs (May 9).

Chen, Wenling, interview by Daniel Badoe. 2016. Review of State Traffic Monitoring Programs (August 11).

Diehl, Sean, interview by Daniel Badoe. 2016. Review of State Traffic Monitoring Programs (October 5).

FDOT. 2014. Project Traffic Forecasting Handbook. Florida Department of Transportation. FDOT. 2007. Traffic Monitoring Handbook. Transportation Statistics Office, Florida Department of Transportation.

FHWA. 2013. Traffic Monitoring Guide. Office of Highway Policy Information, Washington, D.C.: U.S. Department of Transportation. doi:FHWA-PL-13-015.

GDOT. 2013. Traffic Monitoring Program. Office of Transportation Data, Georgia Department of Transportation.

Gordon, Joey, interview by Daniel Badoe. 2016. Review of State Traffic Monitoring Programs (August 2-3).

Hall, James P., Chung-Hsien Sung, and William Morgan. 2014. Analysis of 24-Hour versus 48-Hour Traffic Counts for HPMS Sampling. Special Project, Department of Civil and Environmental Engineering, University of Illinois Springfield, Illinois Center for Transportation. doi:FHWA-ICT-14-007.

IDOT. 2004. Illinois Traffic Monitoring Program. Office of Planning and Programming, Illinois Department of Transportation.

INDOT. 2015. Latest INDOT Traffic Adjustment Factors: Effective for 2014. Division of Asset Planning, Office of Engineering and Asset Management, Indianapolis, Indiana: Indiana Department of Transportation.

Jessberger, Steven, Robert Krile, Jeremy Schroeder, Frederick Todt, and Jingyu Feng. 2016. "Improved Annual Average Daily Traffic Estimation Processes." Transportation Research Record: Journal of the Transportation Research Board 2593: 103-109. doi:10.3141/2593-13.

Katter, Gregory, interview by Daniel Badoe. 2016. Review of State Traffic Monitoring Programs (July 11-12).

NCDOT. 2016. 2015 HPMS Annual Growth Factors Report. Transportation Planning Branch, North Carolina Department of Transportation.

NYSDOT. 2014. 2014 Traffic Data Report for New York State. NYSDOT Highway Data Services Bureau, Traffic Monitoring Section, Albany, New York: New York Department of Transportation.

Piotrowski, Steven, interview by Steven Click. 2016. Review of State Traffic Monitoring Programs (September 7).

Pribyl, Cindy, interview by Daniel Badoe. 2016. Review of State Traffic Monitoring Programs (July 6-7).

Smith, George Milton. 1962. A Simplified Guide to Statistics for Psychology and

Education. 3rd Edition. New York: Holt, Rinehart and Winston, Inc. Soong, Tsu. 2004. Fundamentals of Probability and Statistics for Engineers. England: John Wiley & Sons Ltd.

• TDOT. 2015. Traffic Monitoring Guide. Long Range Planning Division, Nashville, Tennessee: Tennessee Department of Transportation.

Tomlinson, Jadie, interview by Daniel Badoe. 2016. Review of State Traffic Monitoring Programs (June 28).

Virgen, Nicolas, interview by Daniel Badoe. 2016. Review of State Traffic Monitoring Programs (October 27).

Wolff, Catherine, interview by Steven Click. 2016. Review of State Traffic Monitoring Programs (September 2).

WSDOT. 2016. Short Count Factoring Guide. Washington State Department of Transportation.

Acknowledgments

The author would like to acknowledge the Tennessee Department of Transportation for providing the collected PTC data. The author would also like to thank Daniel Badoe for his advice and encouragement in conducting this research.