

Abstract

- With the emergence of the complex network (social media, sensor network, world wide web) the interest in graph mining has increased.
- In a streaming scenario, the concept to be learned might change over time.
- We propose a three-step approach to detect concept-drift detection on the graph streams:-
 - Subgraph Generation: Find subgraphs (discriminative) for graphs in the stream.
 - Entropy Calculation: Measures distribution of current window in the graph stream by computing the entropy.
 - **Drift Detection: -** Detect drift in the series of entropy values by moving one step forward in the sliding window.

Research Objective

Design a state-of-the-art concept-drift detection method on graph streams.

An Approach For Concept Drift Detection in a Graph Stream Using a Discriminative Subgraph Ramesh Paudel and Dr. William Eberle Department of Computer Science

Graph Stream		# of Gi	Drift		
Synthetic	Real World	Class A	Class B	Points	
SD1		1000	1000	1001	
SD2		3000	3000	every 1001 st step	
	DBLP	1000	1000	1001	
	AIDS	1600	400	1601	
	Muta	2401	1936	2402	
	DoS Attack	2979	221	2980	

Table 1. Total graph in graph stream dataset and the drift point

networks and learning systems 29, 99 (2018), 1–14.

Step 2 – Entropy Calculation

• The probability of each discriminative subgraph S_i in the current window with respect to the graph G_i is:

$$P(S_i | G_i) = \frac{r_{S_i}^{G_i}}{\sum_{j=1}^{|G|} r_S^{G_j}}$$

(1)

Entropy of the window based on subgraphs w.r.t. the graphs in W is defined as:

$$e(W) = -\sum_{j=1}^{|S|} P(S_j) \sum_{i=1}^{N} P(S_i | G_i) \log_2 P(S_i | G_i) \quad (2)$$

where $P(S_i)$ is the fraction of subgraphs S_i in W $P(S_i) = \frac{S_i}{\sum_{i=1}^{N} S_i}$, N is the total number of subgraph in W

Fig 4. Positive and negative graph structure used in synthetic dataset

Fig 6. Chemical compound and its graph structure in IAM benchmark dataset

Methods	DDR		DoD		FA1000	
	μ	σ	μ	σ	μ	σ
	DBL	P Cita	tion Net	work		
DSDD	1.0	0	19.24	19.16	1.14	0.24
GEM	1.0	0	339	88.9	10.5	2.15
Zambon et. al.	1.0	0	437.5	-	0.08	0.08
		A	IDS			
DSDD	1.0	0	17.48	19.23	1.11	0.23
GEM	0	0	n/a	n/a	1.18	0.70
Zambon et. al.	1.0	0	62.5		1.31	0.45
		Muta	genicity			
DSDD	1.0	0	22.8	20.63	0.60	0.18
GEM	0.46	0.50	124.12	161.0	1.37	0.42
Zambon et. al.	1.0	0	187.5	-	0.29	0.30
	Ne	twork	DoS Att	ack		
DSDD	1.0	0	21.16	21.24	0.81	0.25
GEM	1.0	0	4.92	1.63	11.05	2.98
Zambon et. al.	1.0	0	62.5	- ÷	0.065	0.048
Table 2: Result on real-world of DDR (Drift Detection	lt obtai dataset ction Ra	ned by ts ate), Do	DSDD a	and base of Detect	eline me tion), FA1	thods

(False Anomalies per thousand time step)

 $\widehat{PE}_{\alpha} =$

wher

classification.

Step 3 – Change Detection

 Use direct density-ratio estimation approach called Relative Unconstrained Least-Squares Importance Fitting (RuLSIF) [1].

• The α -relative PE divergence (\widehat{PE}_{α}) gives the estimate of change.

$$= -\frac{\alpha}{2n} \sum_{i=1}^{n} \widehat{g} (Y_i)^2 - \frac{1-\alpha}{2n} \sum_{j=1}^{n} \widehat{g} (Y_j)^2 + \frac{1}{n} \sum_{i=1}^{n} \widehat{g} (Y_i) - \frac{1}{2}$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) \text{ and } K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \widehat{g}(Y) = \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

$$= \sum_{l=1}^{n} \widehat{\theta}_l \quad K(Y, Y_l) = \exp\left(-\frac{\left||Y-Y'|\right|^2}{2\sigma^2}\right)$$

Experiment

Each experiment is run 50 times by randomizing the graphs in the streams keeping the drift point the same.

Using synthetic graph streams, the effect of the window size |W | is studied.

Using the best W (W = 50), the performance of $\frac{1}{2}$ DSDD with GEM [3] and Zambon et al. [4] on 4 different real-world datasets is compared. For drift detection (step - 3), n = 50, k = 10, and α

= 0.1 are used.

Conclusion

Proposed a novel unsupervised algorithm for drift detection on graph streams called

Discriminative Subgraph-based Drift Detection (DSDD).

Performed several experiments on synthetic as well as real-world data.

It outperformed both baseline approaches in term of the DoD.

Similar DDR and FA1000 with Zambon et. al. In conclusion, the unsupervised nature of DSDD

makes it a more robust in a streaming scenario.

Future Directions

Investigate the scalability of our approach.

Use our drift detection approach along with other learning models and investigate if the accuracy of the learning model can be improved by effectively detecting the drift.

Test the performance against gradual drifts scenarios.