
Hardware/Software Co-verification of DNN for IoT Edge Devices:
Leveraging FPGAs

By Katie Groves and Tolulope A. Odetola, Electrical and Computer Engineering Department

Abstract

Deep neural networks (DNN) is one of the emerging types of

machine learning that is being used to solve problems that are too

complex to be solved by humans. Field Programmable Gate

Arrays (FPGAs) can be used to implement DNNs for IoTs

because of their high throughput, low power operations, and

portability. This research shows how one type of DNN can be

placed on a PYNQ-Z1 board and maintain same prediction

accuracy.

Method

Introduction

• There is a need for IoTs and edge

devices to do real time classifications

• Currently, predictions and calculations

for machine learning are sent through

the network to perform computations off

site and sent back to the device to

output the answer.

• Applying a DNN directly to an IoT will

eliminate the need for IoTs to be

connected to a off site server and

consequently save bandwidth along with

reduced bandwidth

Need:

• With the need for internet and time taken to send and receive

data, this method is too slow [2].

• Portability and flexibility of an FPGA with a DNN will allow for

an adaption to changing environments and inputs from

peripherals.

• When applying a deep learning architecture to an FPGA , a

hardware/software co-verification is needed to ensure the

accuracy is still maintained after implementation onto the

hardware.

Research Question:

• How to accommodate for memory of storing weights and

biases needed by the architecture and computationally

intensive deep learning architectures into the FPGA?

• What methods to use to ensure a hardware/software co-

verification technique?

• A solution to this problem would be to have an FPGA on the

edge deceive to run computations and make predictions on

site.

• A compression of the machine learning framework is needed

in order to fit the architecture on the FPGA.

Acknowledgements: Dr. Hasan, the Electrical and Computer Engineering Department, and the Gower Fellowship
Contact: kmgroves42@students.tntech.edu

Results

For the following results, an image of a hand written 4, shown in Figure 2, was

passed through both of the software and hardware networks. The results are shown

below in Table 1.

Discussion

• After taking the original CNN code and efficiently reducing the

overall size of the code and the parameters, the code

successfully ran in the program Vivado HLS.

• A 28x28 black and white image of a hand written number is

called by the test bench code. The test bench code then passes

the image to the CNN.

• A prediction with its predetermined weights is made. Given

different hand written images, the code has successfully

outputted the correct prediction for hand written numbers.

References
[1] Freepik. “Chip Free Vector Icons Designed by Freepik.” Flaticon, www.flaticon.com/free-

icon/chip_897219.

[2] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for the Internet of Things with

Edge Computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, Jan. 2018.

[3] “Python Zynq = PYNQ, Which Runs on Digilent's New $229 Pink PYNQ-Z1 Python Productivity

Package.” Community Forums, 28 June 2018, forums.xilinx.com/t5/Xcell-Daily-Blog-Archived/bg-

p/Xcell/page/24.

[4] L. Stornaiuolo, M. Santambrogio, and D. Sciuto, “On How to Efficiently Implement Deep Learning

Algorithms on PYNQ Platform,” 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

2018.

Conclusion/Future Works

It can be seen from our work that complex neural networks can be

compressed onto hardware and still maintain accurate results just like

its original software state.

Implementing the final CNN code on the PYNQ board help us with

building a framework which will allow testing and verification of deep

learning on a FPGA to be very convenient.

Future Work:

• Evaluating the effects of approximate computing on the accuracy of

the deployed model on the PYNQ-Z1 board, shown in Figure 3.

• Coming up with a framework for hardware/software co-verification of

DNN without requiring intricate knowledge of FPGA design.

• Train the CNN on Caffe using a GPUTrain

• Test the weights to ensure correct prediction

• Test reducing weight bit size and confirm its accuracyTest

• C++ layer abstraction of the network

• Convert parameters from python to C++C++

• Implement C++ layer abstraction in Vivado HLS

• Ensure the code compiles with no errorsImplement

• Read Test Image from File

• Ensure it Mimics the Caffe outputTest

• Package Code and Generate custom IP in Vivado

• Configure and deploy code to PYNQ-Z1Deploy

Fig. 2: Hand
written 4

Conv1

Pool1

Conv2

Caffe Vivado

Predict

Table 1: Predicted results of both Caffe and Vivado

Fig. 1: Intelligent Hardware [1]

Fig. 3: Xilinx PYNQ-Z1 [3]

