

Tennessee TECH

Introduction

The cost of catalyst in polymer electrolyte membrane fuel cell (PEMFC) is being reduced by increasing the activity and reducing the loading from 0.4 mg^{Pt}/cm² to below 0.1 mg^{Pt}/cm². This results in nominal operational mass transport losses at the diffusion media/catalyst layer interface¹. Mass transport of dilute O_2 at the interface between cathode catalyst layer (CCL) and gas diffusion layer (GDL).

At -20° C, O₂ concentration dependent voltages and hydration dependent ionic conductivity will be assessed. In this work, the interfacial losses at the interface of the ultrathin film catalyst layers will be investigated. We wish to establish the relationship between different carrier gasses and diffusivity of O_2 at the gas diffusion layer. This work is on understanding ice formation mechanism in PEMFC at subzero temperature.

Fixture and Experimental

Fuel Cell Fixture

- 1. 16cm² triple pass serpentine flow fields (3/16" thick).
- 2. Catalyst: 0.3mg^{pt}/cm², 1.2ionomer-carbon ratio, Nafion 212 membrane. Ion Power SGL25BC.

Isothermal Water Fill Test

- Operate the cell at $T_{cell} = 80^{\circ}C$, 42% relative humidity (%RH) for 10 polarization curves.
- %RH condition to 75% with inert gas at $T_{cell} = 80^{\circ}C$.
- Freeze cell to -20^oC.
- Cold start: $T_{cell} = -20^{\circ}C$, I = 10mA/cm². Flowrate = 0.05lpm 0.1 pm at the anode (H_2) and cathode (O_2) respectively.

EFFECT OF INTERFACIAL MASS TRANSPORT LOSSES AT THE ULTRATHIN FILM CATALYST LAYER TO DIFFUSION LAYER **OF A PEMFC AT SUB-ZERO CONDITIONS.** A. I. Adeleke and C.A Rice

Department of Chemical Engineering and Center for Manufacturing

