PHOTOCATALYTIC METHODS FOR CONTAMINANT DEGRADATION AND HYDROGEN PRODUCTION IN WASTE WATER USING SOLAR/UV RADIATION Dipendra Wagle¹, Dr. Pedro E. Arce², Dr. J. Robby Sanders²

degradation will be much beneficial optimized technology.

 To develop a general technique to synthesize an effection photocatalyst : Photocatalyst 1 for contaminant degradation purples in Surface Characterization Testing degradation rates under various experimes Photocatalyst 2 for hydrogen production (renewate Surface Characterization) Testing H₂ production rates (by GC) under various conditions Photocatalyst 3 for dual purpose Surface Characterization Testing degradation rates and H₂ production rates experimental conditions Optimization between contaminant degradation production Proposing a general reaction mechanism and global ki model pharmaceuticals degradation and H₂ production Evaluation of overall efficiency of photocatalysts 1, 2, a synthesized for above specified purposes 			Project Objectives	
Photocatalyst 1 for contaminant degradation purp1.1Surface Characterization • Testing degradation rates under various experim • Testing degradation rates under various experim • Surface Characterization • Testing H2 production rates (by GC) under variou conditions1.2Photocatalyst 2 for hydrogen production (renewat • Surface Characterization • Testing H2 production rates (by GC) under variou conditions1.3Photocatalyst 3 for dual purpose • Surface Characterization • Testing degradation rates and H2 production rate experimental conditions • Optimization between contaminant degradation production2Proposing a general reaction mechanism and global ki model pharmaceuticals degradation and H2 production 33Evaluation of overall efficiency of photocatalysts 1, 2, a synthesized for above specified purposes	1	To develop a general technique to synthesize an effectiv photocatalyst :		
Photocatalyst 2 for hydrogen production (renewal Surface Characterization Testing H2 production rates (by GC) under variou conditionsPhotocatalyst 3 for dual purpose Surface Characterization Surface Characterization Testing degradation rates and H2 production rate experimental conditions Optimization between contaminant degradation productionProposing a general reaction mechanism and global ki model pharmaceuticals degradation and H2 productionProposing a general reaction production synthesized for above specified purposes		1.1	 Photocatalyst 1 for contaminant degradation purport Surface Characterization Testing degradation rates under various experiment 	
 Photocatalyst 3 for dual purpose Surface Characterization Testing degradation rates and H₂ production rate experimental conditions Optimization between contaminant degradation production Proposing a general reaction mechanism and global ki model pharmaceuticals degradation and H₂ production Evaluation of overall efficiency of photocatalysts 1, 2, a synthesized for above specified purposes 		1.2	 Photocatalyst 2 for hydrogen production (renewable) Surface Characterization Testing H₂ production rates (by GC) under various conditions 	
 Proposing a general reaction mechanism and global ki model pharmaceuticals degradation and H₂ production Evaluation of overall efficiency of photocatalysts 1, 2, a synthesized for above specified purposes 		1.3	 Photocatalyst 3 for dual purpose Surface Characterization Testing degradation rates and H₂ production rates experimental conditions Optimization between contaminant degradation variable production 	
Bigginal Second	2	Proposing a general reaction mechanism and global kir model pharmaceuticals degradation and H ₂ production		
	3	Evaluation of overall efficiency of photocatalysts 1, 2, ar synthesized for above specified purposes		

¹Chemical Engineering PhD Program, College of Engineering, ²Department of Chemical Engineering, College of Engineering Tennessee Technological University, Cookeville, TN

Results and Discussion

General Kinetics of photocatalytic degradation (radiation field effect)

 The degradation of a pollutant on the catalyst surface is described by Pseudo-first-order kinetics as given by Langmuir-Hinshelwood scheme:

$$(A, I) = -\frac{1}{dt} = \frac{1}{1 + K_{ad}C_A}$$

 Langmuir-Hinshelwood scheme is modified under the effect of radiation field. Therefore, the photocatalytic degradation of pollutant in water on the surface of TiO_2 film under the radiation field is :

$$(T, \varphi) = -\frac{dC_A}{dt} = \frac{K_{ad}k_rC_A\varphi}{1 + K_{ad}C_A}$$

• Pollutants are present in very low concentration in waste water ($C_A <<1$)

$$-\frac{ac_A}{dt} = K_{ad}k_r C_A \varphi$$

• This differential equation can be solved for C_A by integrating it

$$_{l}k_{r}\varphi \mid dt \Longrightarrow lnC_{A} = -K_{ad}k_{r}\varphi t + c$$

n:@t=0, C_A=C_{A0}
$$\Longrightarrow$$
 c = lnC_{A0}
 $k_r \varphi t + lnC_{A0} \Longrightarrow ln \frac{C_A}{C_{A0}} = -k_{app} \varphi t$

$$\Rightarrow ln \frac{c_A}{c_{A0}} = -k_{app}(I_0 e^{-\mu r})t$$
$$\Rightarrow C_A = C_{A0} e^{-[k_{app}(I_0 e^{-\mu r})t]}$$

egradation	$k_{app} = k_r(T) * K_{ad}$	pseudo-first order rxn rate constant
et	$\boldsymbol{\varphi} = \mathbf{I}_0 \mathbf{e}^{-\mu \mathbf{r}}$	radiation intensity at the film surface
nt	I ₀	Initial radiation intensity
	μ	Linear attenuation coefficient
egradation	r	Position in the reactor

Conclusions and Future Work

Suspension based photocatalytic degradation in a batch process versus coating-based continuous process can be compared.

Coating-based continuous process for waste water treatment can be suggested for large scale commercialization.

References

1. Im, J.S.; Park, S.-J.; Kim, T.; Lee, Y.-S. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers. Int. J. Hydrogen Energy 2009, 34, 3382–3388. 2. Park, S.-J.; Lee, S.-Y. Hydrogen storage behaviors of Pt-supported multi-walled carbon nanotubes. Int. J.

3. Baykara, S.Z. Hydrogen: A brief overview on its sources, production and environmental impact. Int. J.

4. T. Takata, G. Hitoki, J. N. Kondo, M. Hara, H. Kobayashi, & K. Domen, "Visible-light-driven photocat behavior of tantalum-oxynitride & nitride," Research on Chem. Intermediates, vol. 33, #1-2, pp. 13–25, 2007. 5. S. V. Tambwekar and M. Subrahmanyam, "Photocatalytic generation of hydrogen from hydrogen sulfide: an energy bargain," International Journal of Hydrogen Energy, vol. 22, no. 10-11, pp. 959–965, 1997.

6. J. H. Choy, H. C. Lee, H. Jung, and S. J. Hwang, "A novel synthetic route to TiO2-pillared layered titanate with enhanced photocatalytic activity," J. of Materials Chemistry, vol. 11, no. 9, pp. 2232–2234, 2001.

Acknowledgements

I would like to thank Department of Chemical Engineering for giving me this space to learn. I would also thank my colleague Ms. Sabrina Hurlock for helping me in modeling the reactor in radiation field. I would like to thank College of Engineering, Water Center, and the entire body of the