
• Sauer, et al. apply the following boundary 

conditions (10) to equation (9) and solve for the 

average electric potential (11).

2. Area Average of Concentration

• The average concentration is found by applying the 

area average equation (4) to the molar species 

continuity equation (3).

• Introduce the deviation variable using equation (5)

• Substitute the expression for deviation (13) into the 

molar species continuity equation (3) and subtract 

out the average expression (12).

• Use the long channel approximation, the quasi-

steady state approximation on the expression for 

the deviation field (14). Assume that the average 

concentration is much larger than the deviation of 

the concentration.

• Sauer, et al. solve equation (15) by applying the 

following no-flux boundary conditions (16).
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• Sauer, et al. use the following expressions (17) -

(21) to determine the effective transport 

parameters (22) - (24).
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Results

Through this project, techniques are being developed 

and systematized for the analysis of the microscopic 

transport equations that describe gel electrophoresis 

at a local level, within a capillary of the hydrogel 

material. Such equations are upscaled to macroscopic 

equations using a technique known as area averaging. 

1. The area average of a general spatial function 

𝑓 𝑥, 𝑦, 𝑧 can be defined as

2. Develop a closure condition that uses a deviation 

variable that can be determined using geometrical 

or physical assumptions. The average value 𝑓 is 

related to the deviation variable ሚ𝑓 𝑥, 𝑦 and to its 

point values 𝑓 𝑥, 𝑦 by the following equation:

3. Test the validity of the assumptions by comparison 

to the exact solution if possible.
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Discussion

The migration of a biomolecule through a pore 

during gel electrophoresis may be modeled using 

these macro-transport equations, allowing for 

connection to macroscale parameters that are able 

to be measured experimentally. These parameters 

are directly related to fundamental transport and 

geometrical quantities of the system modeled. 

• A hydrogel is a three-dimensional network of 

chemically or physically cross-linked polymers.

• Hydrogels have porous structures at the 

nanometer scale and are able to contain large 

amounts of water without changing their structure.

• Hydrogels are widely used for gel electrophoresis, 

which is a technique to separate biomolecules, 

such as proteins, nucleic acids, and 

pharmaceuticals, for industrial, biological, and 

environmental processes.

• During gel electrophoresis, biomolecules migrate 

through pores of varying shapes and sizes in the 

presence of an electric field and separate 

according to their size and charge.

Figure 1: Model rectangular domain where gel electrophoresis occurs
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Three governing equations determine the physics of 

the given system.

1. A form of the Hagen-Poiseuille velocity profile 

describes 1-D, incompressible flow in a 

rectangular channel with stationary boundaries.

2. The Laplace equation is used to determine the 

electric potential in a 2-D system.

3. The molar species continuity equation accounts 

for convective, diffusive, and electrostatic 

species transport and is used to determine the 

concentration profile.

Where 𝑣𝑥 is the velocity in the x-direction, 𝜇 is the 

Newtonian viscosity, ∆𝑃 is the pressure drop in the 

rectangular channel, 𝐿 is the length of the channel, 

ℎ is the height of the channel, 𝜑 is the electric 

potential, 𝑐 is the molar concentration of the 

macromolecular species, 𝑢 is the electrophoretic 

mobility and 𝐷 is the diffusivity.
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1. Area Average of Electrical Potential Field

• The average electrical potential is found by applying 

equation (4) to the Laplace equation (2)

• Introduce the deviation variable using equation (5)

• Substitute the expression for deviation (7) into the 

original Laplace equation (2) and subtract out the 

average expression (6).

• Use the long channel approximation where 𝐿 ≫ ℎ
to neglect the deviation of the potential in the x-

direction with respect to the potential in the y-

direction.
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