

Towards Domain Generating Algorithm based Malicious Domains Detection

Md. Ahsan Ayub and Steven Smith Advisor: Dr. Ambareen Siraj Department of Computer Science

ABSTRACT

- A machine learning approach for effective detection of malicious Domain Generating Algorithm (DGA) based Domains used by botnets and other malware for evasion.
- Makes use of two feature extraction methods, Bag of Words and Word2Vec for text processing.
- Considers binary detection and multiclass classification for 84 different DGA families, the largest study of DGA domain detection to date.

BACKGROUND

- DGAs are used to dynamically produce a large set of domains to evade blacklisting and reverse engineering.
- Two types of DGAs: Traditional DGAs & Dictionary-based DGAs.
- DGAs are primarily used by botnets to aid in performing cyberattacks such as DDOS, and in sending spam and phishing emails.

DATASET

- DGArchive: DGA domains labelled by DGA family (84 total families).
- Majestic Million: Top 1 Million Most Visited domains used as benign Domain Names
- Dataset split into 70% training, 20% testing, and 10% validation.

DETECTION METHODOLOGY

- Two techniques compared using the Bag of Words (BoW) Bigram model, and the Word2Vec model.
- Considered NXDomain and VirusTotal Scan Results for Classification.
- Detection with the BoW Model:
 - Bigram (2-Gram) Model used to capture context of two word combinations in domains.
 - Logistic Regression, Decision Tree, and Artificial Neural Network (ANN) considered.
- Detection with the Word2Vec Model:
 - Long Short Term Memory (LSTM) Network used to capture temporal relationships among tokens in a sequence.

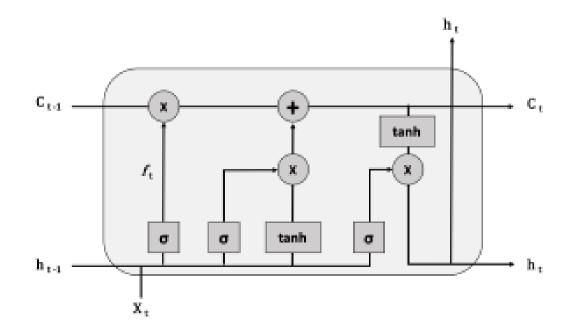


Fig. 1: A Unit Cell of the Long Short Term Memory (LSTM)
Network

RESULTS									
Model	Accuracy	Precision	Recall	$ F_1 $					
Logistic Regression	0.9816	0.9911	0.9993	0.9833					
Decision Tree	0.9965	0.9965	0.9988	0.9941					
ANN	0.9979	0.9979	0.9979	0.998					
LSTM	0.995	0.9949	0.9958	0.994					

Fig. 2: Performance of Each Model for Binary Classification

- Binary Classification/Detection
 - ANN with Bigram BoW model proves to be the highest performing technique – With over 99% accuracy, precision, F1, and Recall Scores.
 - Best classification results to date as seen in Fig. 3.

Research Work	No. of DGAs	Method	Classification	Precision	Recall	F_1
Our Study	84	ANN	Binary	0.9979	0.9979	0.998
			Multiclass	0.9358	0.9358	0.9358
Woodbridge et al. [92]	30	LSTM	Binary	0.9942	0.9937	0.9906
			Multiclass	0.963	0.97	0.963
Lison et al. [55]	56	RNN	Binary	0.972	0.97	0.971
			Multiclass	0.891	0.892	0.887
Tran et al. [88]	37	LSTM	Binary	0.9842	0.9842	0.9842
			Multiclass	0.8728	0.8775	0.8751

Fig. 3: Performance Compared to Previous Work

- Multiclass Classification
 - Effective classification for 69 out of 84 DGA families.
 - Considers the most families out of any study.
 - Average performance lowered due to 10 families with less than 300 samples, and 5 with similar randomness to benign samples.

CONCLUSION

- Achieved the best results to date for Binary Classification with the combination of Bigram BoW and ANN.
- Effective multiclass classification for a larger set of families than previous studies through the use of Bigram BoW and ANN techniques.

ACKNOWLEDGEMENT

The work reported in this poster has been fully supported by Cybersecurity Education, Research & Outreach Center (CEROC) at Tennessee Tech.