
Buffer Overflow Exploits and Protection Mechanisms
Glen Cathey, Emre Karagoz, Denis Ulybyshev

Department of Computer Science

Motivation ReferencesBuffer Overflow Exploit Protection Mechanisms

• Non-Executable Stack – Malicious code injected into the
stack will not be executed, only code in the data section
of the address space is executed. This is achieved via
flags at code compilation.

• Address Space Layout Randomization (ASLR) – The
layout of the process' address space is randomized to
prevent the same malicious payload from always
functioning.

• Canaries – Special marker is placed between the buffer
and return address and checked for correctness before
executing the return.

• Address Sanitizer (ASan) – Open-source algorithm from
Google™, which manages memory allocation and
deallocation to prevent buffer overflows [2].

• Valgrind™ – Runs all the instructions in code virtually, in
order to analyze memory usage and prevent data
corruption [3].

• Buffer Overflow is a cyber-security vulnerability where
assumed immutable data are corrupted or modified via the
overflow of a buffer with malicious user input.

• 82 students were provided a generic C source code file (see
Fig. 1), which contains a buffer overflow vulnerability.

• Each student was provided with a separate executable
compiled from the vulnerable source code similar to a
generic one, but with the unique secretFunction().

• The students' goal was to jump into the secretFunction [1]
by overwriting the return address of FileCompress() – see
Fig. 1. This was to be done by providing the malicious input
file name to compress and overflowing the character buffer
up the stack, therefore overwriting both %ebp and the
return address of the FileCompress() function – see Fig. 5.

• The idea to jump to a secretFunction() is taken from [1]

• Do a survey on protection methods against 
Buffer Overflow vulnerabilities

• Develop a lab for students so that they can:

• Practice with exploiting a Buffer Overflow 
vulnerability in a simple file compression 
utility, written in C language

• Fix the vulnerability and learn about different 
protection mechanisms

[1] Kapil, Dhaval. “Buffer Overflow Exploit.” 
[Online], https://dhavalkapil.com/blogs/Buff
er-Overflow-Exploit/. Last Accessed: 20 Apr. 
2020

[2] "AddressSanitizer" [Online], 
https://clang.llvm.org/docs/AddressSanitizer.
html. Last Accessed: 20 Apr. 2020

[3] "About Valgrind" 
[Online], https://valgrind.org/info/about.htm
l. Last Accessed: 20 Apr. 2020

Figure 1 : C source code for a simple 

file compression utility

Figure 2 : Function to be jumped into via buffer overflow 

exploit

Figure 5 : Stack Memory Layout 

for FileCompress() Function

Figure 4 : CyberRange environment for the 

Buffer Overflow Lab

Figure 3 : Allocation of the buffer in FileCompress()

Acknowledgements

This Project is funded by QEP EDGE Curriculum 
grant from Tennessee Technological University 

https://dhavalkapil.com/blogs/Buffer-Overflow-Exploit/
https://clang.llvm.org/docs/AddressSanitizer.html
https://valgrind.org/info/about.html

