Buffer Overflow Exploits and Protection Mechanisms

E E R Glen Cathey, Emre Karagoz, Denis Ulybyshev

CYBERSECURITY EDUCATION, Department of Computer Science

RESEARCH AND OUTREACH CENTER

Buffer Overflow Exploit Protection Mechanisms Acknowledgements

110100101
001@mw001
1010gy1101
100001010

Do a survey on protection methods against * Buffer Overflow is a cyber-security vulnerability where * Non-Executable Stack — Malicious code injected into the [1] Kapil, Dhaval. “Butfer Overflow Exploit.” This Project is funded by QEP EDGE Curr.iculu.m
Buffer Overflow vulnerabilities assumed immutable data are corrupted or modified via the stack will not be executed, only code in the data section [Online], https://dhavalkapil.com/blogs/Buff grant from Tennessee Technological University
overflow of a buffer with malicious user input. of the address space is executed. This is achieved via er-Overflow-Exploit/. Last Accessed: 20 Apr.

* Develop alab for students so that they can:
flags at code compilation. 2020

[2] "AddressSanitizer" [Online],
https://clang.llvm.org/docs/AddressSanitizer.
html. Last Accessed: 20 Apr. 2020

« 82 students were provided a generic C source code file (see

Fig. 1), which contains a buffer overflow vulnerability. * Address Space Layout Randomization (ASLR) — The
layout of the process' address space is randomized to
prevent the same malicious payload from always

Practice with exploiting a Buffer Overflow
vulnerability in a simple file compression
utility, written in C language * Each student was provided with a separate executable
compiled from the vulnerable source code similar to a

Fix the vulnerability and learn about different - 3] "About Valgrind"
orotection mechar:/isms generic one, but with the unique secretFunction(). funct|f)n|ng. . _ |][Online], ht%ps://vaIgrind.org/info/about.htm
* The students' goal was to jump into the secretFunction [1] * Canaries — Special marker is placed between the bufter |. Last Accessed: 20 Apr. 2020
by overwriting the return address of FileCompress() — see and rejcurn address and checked for correctness before |
Fig. 1. This was to be done by providing the malicious input executing the return. DE‘P'WWEM of &2 Versions of
file name to compress and overflowing the character buffer * Address Sanitizer (ASan) — Open-source algorithm from Frojectinto TTU Cyber Range > CERDC
ks e up the stack, therefore overwriting both %ebp and the Google™, which manages memory allocation and Lyber Range
#include <string.h> return address of the FileCompress() function — see Fig. 5. deallocation to prevent buffer overflows [2].
void secretFunction() * The idea to jump to a secretFunction() is taken from [1] * Valgrind™ — Runs all the instructions in code virtually, in
{ T S N B e R order to analyze memory usage and prevent data Safe VPN Connection to
) ‘ “ SR B AR Vi o N S corruption [3]. the Cyber Range
void FileCompress())
{ s [EJBMQIBZ *f-SEEI‘EtFLII'IEtlDH}:}
char exists[28] = "test -f "; 8049152: 55 push %ebp +
i LA 8049153 89 e5 mov %esp,%ebp v
char mv[45] = "mv "; 8049155: 83 ec 08 sub $0x8,%esp
s mratis 8049158 83 ec Oc sub $0XC,%esp
R T i B 804915b: 68 08 abl 04 08 push $0x804a008 %{} .5. E
gets(buffer); 8049160 ff 15 f4 bf 04 08 call *Ox804bfT4 VM VM2 VMED
Ty T P 8049166 83 c4 10 add $0x10,%esp
status = system(exists); 8049169: 83 ec 0Oc sub $EHE,%ESD
- (Stat:iiif??g"f "File not found, exiting"); 804916¢C: 68 lc ab 04 08 push $0x804a01c .
} return; h 8049171 ff 15 f4 bf 04 08 call *Ox804bfT4
8049177 : 83 c4 10 add $0x10,%esp “
ciroaticp, S 53y sb4917a: 20 nop Student1 Student2 Students?
strcat(cp, buffer); 804917b: c9 lLeave
assivin bt M 804917c: c3 ret Figure 4 : CyberRange environment for the
. | Buffer Overflow Lab
;5:32(?29552;{533; Figure 2 . Function to be jumped into via buffer overflow
o (Statsii;f??x“f "Gzip failed, exiting”); eXpIOit
} return;
else {
; printf("%s has been zipped. \n", buffer);
I Ep— 80492a8: cé 85 7d ff ff ff 00 movb $0x0, -0x83 (%ebp)
streat(mv, "1°); 80492af: 83 ec 0Oc sub $0XC,%esp
itur i g L 80492b2: 68 45 a® 04 08 push $0x804a045
Ryatemm; 80492b7: ff 15 f4 bf 04 08 call *Ox804bfT4
: return; 80492bd: 83 c4 10 add $0x10,%esp
B 80492c0: 83 ec 0Oc sub $0xc,%esp 20 bytes
{ 80492c3: 8d 45 el Lea -0x20 (%ebp) ,%eax
ecomprasal); 80492c6: 50 push %eax
g Snarh &y 80492c7: ff 15 ec bf 04 08 call *0x804bfec 28 bytes
Figure 1 : C source code for a simple Figure 3 : Allocation of the buffer in FileCompress() Figure 5 : Stack Memory Layout

fille compression utility for FilleCompress() Function

https://dhavalkapil.com/blogs/Buffer-Overflow-Exploit/
https://clang.llvm.org/docs/AddressSanitizer.html
https://valgrind.org/info/about.html

