
Protection Against Cross-Site Scripting (XSS)
Attacks

Julianne Cox          Dr. Denis Ulybyshev
Department of Computer Science

[1] Acunetix, "Preventing XSS Attacks," Acutenix Web Security 
Zone. Sep. 5, 2011. 
[2] A. Klein, "DOM Based Cross Site Scripting or XSS of the 
Third Kind," Web Application Security Consortium (WASC), v. 
0.2.8, July 2005. 
[3] D. Wichers et al, "Types of XSS," The OWASP Foundation, 
[4] G. Rama Koteswara Rao et al, "Cross Site Scripting Attacks 
and Preventative Measures," International Research Journal of 
Engineering and Technology (IRJET), vol. 4, no. 3, Mar. 2017. 
Feb. 9 2020. 
[5] J. Manico et al, "Cross Site Scripting Prevention Cheat 
Sheet," Cheat Sheet Series, OWASP, no. 19, 2014.
[6] J. Manico et al, "DOM Based XSS Prevention Cheat Sheet," 
Cheat Sheet Series, OWASP, no. 21, 2014.
[7] N. Gupta, "Cross-Site Scripting (XSS)," IBM MSS. Research 
and Intelligence Report. Dec. 15, 2014.
[8] “Common Vulnerabilities and Exposures”, 2020, [Online], 
Available: https://cve.mitre.org/, Last Accessed: 18 Apr. 2020

Acknowledgment: This project is funded by the QEP EDGE Curriculum Grant from Tennessee Technological University.

Implementation and Results

References

Introduction

Figure 5 – The protected version successfully stopping an XSS attack.

Types of XSS Attacks
• Reflected XSS (AKA Non-Persistent) – the 

browser “reflects” malicious script when a user 
clicks on an attacker’s link

• Stored XSS (AKA Persistent) – script from an 
attacker is stored on the server; whenever the 
server content is loaded, so is the script

• DOM-Based XSS - when a link with script in it is 
clicked, the script is populated in the URL 
property of the DOM which executes the attack [2]

Figure 2 – Attack script stored in a MySQL 
database as a comment.

• Back End: MySQL database to host usernames, 
hashes of passwords, and comments; PHP, 
HTML, and JavaScript code used to create the 
websites.

• Front End: Users must go through registration 
and login pages to access the main discussion 
forum

• There are enforced parameters on the username 
and password (length, character requirements)

• Chosen Attack Type: Stored XSS

• Chosen Protection Method: Input Validation

• The PHP function “stristr” searches strings to 
identify common characters <, >, or / 

• It also searches for key phrases “script”, 
“document.cookie” present in script injections

• When a comment is posted, these functions scan 
it and look for those characters and key words

• If a comment is deemed malicious, it is blocked 
from being entered into the MySQL database and 
returns a warning to the user

Conclusions

Figure 1 – Stolen cookie sent to a document 
filled by the script injection

Website Attributes

Methods of Protection
• Input Validation – allowing or disallowing input 

based on its presence/absence from a 
white/blacklist

• Input Sanitization – eliminating unwanted 
characters by “sanitizing” the input submitted

• Disabling HTTP Trace – a method which echoes 
input back to the user and could execute malicious 
script 

• Escaping Control Characters – changing certain 
characters into text to prevent script execution 

• Using an Automated Scanner – tools exist which 
can scan code to identify vulnerabilities [1]

• Performing Code Reviews – regularly review 
your code to ensure it properly handles user input 

Figure 3 – A comment with malicious script.

Figure 4 – The vulnerable version falling victim to a script injection.

• XSS attacks involve stealing cookies by injecting 
malicious scripts through user input

• Once injected, the scripts covertly deliver the 
website’s cookies to the attacker’s desired 
location

• We deployed two versions of a website: 
vulnerable and protected

• Users can submit comments

• XSS attacks succeed on the vulnerable site and 
fail on the protected one

• There are 15543 XSS vulnerabilities currently 
reported in the Common Vulnerabilities and 
Exposures (CVE) Public Database [8]

• XSS protection mechanism successfully 
implemented, using Input Validation method

• Solution source code is minimal which meets 
the original goal of being easily implementable

• Further research could be done on combining 
the function variations for ease of access

• The document displayed in Figure 1 is 
populated by script injections being loaded

• The script in Figure 3 includes a pop-up so 
users can immediately identify if attack was 
successful, which is displayed in Figure 4

Figure 5 contains one of many errors the user can receive based on which type of script they injected

https://cve.mitre.org/

	Slide Number 1

