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§ Identify denial of service attacks, port
scans, and other cyber-attacks using
network graphs.

§ Unique approach that identifies
anomalous hotspots by tracking sudden
increases/decreases edges connecting to
a vertex; or the sudden (dis)appearance
of edges with high weight

§ SNAPSKETCH is fully unsupervised, has
constant memory space usage, and can
be used for real-time anomaly detection.

Introduction SNAPSKETCH Framework SNAPSKETCH Algorithm
§ Perform node2vec [5] random walk on the graph and construct n-shingles. 
§ Identify discriminative shingles (shingles with the highest frequency) and randomly project them into 

a d-dimensional projection ℎ". 
§ Sketch graphs using a simplified hashing of projection vector ℎ" and the cost of shingles 𝑐$.
§ The sketching converts the graph 𝐺$ into a d-dimensional sketch vector 𝑣'(.
§ Detect anomalous hotspot using RRCF [2] in the sketch vector.
§ SNAPSKETCH	has several advantages, fully unsupervised learning, constant memory space usage, 

entire-graph embedding, and real-time anomaly detection.

Problem Statement:
Given a graph stream 𝐺) = {𝐺,, 𝐺., … , 𝐺$, … },
our goal is to learn a graph representation
function 𝑓 for each graph 𝐺$ ∈ 	ℝ|6|

7such that
𝑓 ∶ 𝐺$ → 	𝑣'( ∈ ℤ

" and 𝑑 ≪ 𝑣 .

and using 𝑣'( detect whether a graph 𝐺$	at
any time	𝑡 contain an anomalous hotspot.

Goals
• Generate a fixed-size feature vector

(SNAPSKETCH ) to represent a graph in a graph
stream.

• Detect DoS attack (a type of anomalous
hotspot) in network traffic using a
SNAPSKETCH.

Real-time Anomaly Score
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Fig 2. Anomaly score reported on smart home IoT traffic. 
Blue plot indicates the ground truth anomalies. Spike in 
red plots indicates the anomaly score reported by the 

respective approaches over time.

Fig 3: Anomaly score reported on DARPA dataset.
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§ Run RRCF [1] anomaly detection algorithm
on sketch vector generated by SNAPSKETCH
generated, Spotlight [3], and StreamSpot
[2] on the following two datasets and
compare their performances.

Experimentation

Results

Conclusion
§ SNAPSKETCH can effectively represent the graph
into a fixed-size sketch vector.

§ Using RRCF [1] on sketch vector anomalous
events like denial-of-service attacks can be
detected.

§ SNAPSKETCH has better precision and recall
than baseline SpotLight [3] and StreamSpot [2]
approaches on top –m anomalous graphs.

Fig 1. An Illustration of SNAPSKETCH framework
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