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STUDY OBJECTIVE: consume it.

» Determine what factors drive oxygen production and
consumption, and assess how changes in lake depth will alter Results — Sediment
the relative contribution of water-column and sediment to
whole-lake DO concentrations

 Increasing lake depth could
increase phytoplankton, but not
if rising water is accompanied

(A) Algal biomass on lake sediments with more sediment and TN.

was lower in shallow areas (near the
shore) across seasons.

* The sediment algae in deep areas is likely composed of settling,
dying phytoplankton.
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