Computational Design of Novel Inhibitors of Dihydrofolate Reductase in Three Bacterial Species

Α.

TENNESSEE TECH

Introduction

Dihydrofolate Reductase (DHFR) is an enzyme present in all living organisms that is essential for cell growth. The enzyme catalyzes the conversion of dihydrofolate to tetrahydrofolate using NADP as an electron donor (Figure 1). The aims of this project are the design of high affinity small molecule inhibitors of bacterial DHFR for the purpose of obtaining broad-spectrum antibiotics against multiple bacterial diseases, including Bacillus anthracis (anthrax), Staphylococcus aureus, and Mycobacterium tuberculosis.

Figure 1. Oxidation-Reduction Reactions catalyzed by DHFR (Source: Wikipedia).

In order to provide a new antibacterial drug novel DHFR inhibitors were systematically designed and analyzed to find a wide range drug which can target multiple species of bacteria. This analysis was conducted using the Protein Frustratometer

(http://frustratometer.qb.fcen.uba.ar/, EMBNet & University of Buenos Aires, Buenos Aires, Argentina) and Evolutionary Trace

(http://lichtargelab.org/software/ETserver, Baylor College of Medicine, Baylor University, Houston, Texas USA). Evolutionary trace and frustration are both important for defining the active site, as they are useful in determining binding specificity, and areas of the molecule in high energetic states, respectively. 189 small organic molecules were designed based off of a (database review) and designed to interact with these amino acid functional groups based on complementary, non-covalent functional group interactions. They were then docked into the 3D structure of DHFR using the Small Molecular Docking module of MOE2020. The compound were also analyzed according to the ligand interactions in order to determine if it was interacting with the active site and Lipinski's Rules of 5 which helps to determine if an antibiotic would be effective in humans.

Methods

The three dimensional structures of dihydrofolate reductase were downloaded from the Protein Data Bank (RCSB PDB, Rutgers University, New Brunswick, NJ USA; <u>https://www.rcsb.org/</u>) for three bacterial species: *B. anthraces* (PDB accession code: 3sa2) (3), *M.* tuberculosis (PDB accession code: 1dg8) (4) and *S. aureus* (PDB accession code: 3frd) (5). Using the molecular modeling software MOE 2020 (Chemical Computing, Ltd., Montreal, Quebec CANADA), each molecule was protonated to physiological conditions (temperature = 300 K, pH = 7, salt concentration = 0.1 M), and water molecules present were removed. The AMBER14:EHT force field was used for all calculations. To analyze the active site for potential ligand interactions, the Protein Frustratometer and Evolutionary Trace software was employed. The modified PDB structure of each bacterial species was used as input for each. For this project, a residue was considered frustrated if the frustration density was 20% or greater and the evolutionary trace was noted if the importance from the evolutionary trace was within the top 25%. 189 potential inhibitors were computationally designed from two lead compounds obtained from a previous study (source).

Each potential inhibitor was modeled in MOE 2020 and subjected to energy minimization using the AMBER14:EHT force field until a gradient of 0.01 kcal/mol was reached, indicating convergence. Each molecule was docked into each of the three bacterial species using the Docking module of MOE 2020. Before the molecules were docked in the DHFR active site, the active sites were manually selected. The docking placement method was done using the triangle matcher and London dG used for scoring, and the final docking and refinement was accomplished using the induced fit method with the GBVI/WSA dG scoring method to calculate the binding free energy for each compound (kcal/mol).

								9			
Name	R_1	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	R ₉	R ₁₀	R ₁₁
2020-01	Н	Cl	Н	Н	Н	Н	Н	Н	Н	Н	C_3H_5
2020-02	Н	Н	Br	Н	Н	Н	Н	Н	Н	Н	C_3H_5
2020-03	I	Н	Н	Н	Н	Н	Н	Н	Н	Н	C_3H_5
2020-04	Н	I	Н	Н	Н	Н	Н	Н	Н	Н	C_3H_5
2020-05	Н	Н	CO ₂ H	Н	Н	Н	Н	Н	Н	Н	C_3H_5
2020-06	Н	Н	Н	Н	Н	Н	Н	Н	C_3H_5	Н	Н
2020-07	Н	Н	Н	Н	C_3H_5	Н	Н	Н	Н	Н	Н
2020-08	Н	Н	Н	Н	Н	C_3H_5	Н	Н	Н	Н	Н
2020-09	Н	Н	Н	Н	Н	Н	Н	Н	F	Н	C_3H_5
2020-10	Н	Н	Н	Н	Н	Н	Н	Н	Cl	Н	C_3H_5
2020-11	Н	Н	Н	Н	Н	I	Н	Н	Н	Н	C_3H_5
2020-12	Н	Н	Н	CO ₂ H	Н	Н	Н	Н	Н	Н	C_3H_5
2020-13	Н	Н	Н	Н	Н	Н	Н	Н	CO ₂ H	Н	C_3H_5
2020-14	Н	Н	Н	Н	Н	Н	Н	CO ₂ H	Н	Н	C_3H_5
2020-15	Н	Н	Н	Н	Н	Н	COH	Н	Н	Н	C_3H_5
2020-16	Н	Н	Н	Н	Н	Н	Н	Н	СОН	Н	C_3H_5

Binding Free Energy

	Binding Free Energy (kcal/mol)									
Name	B. anthraces	M. tuberculosis	S. aureus							
2020-01	-7.9582	-7.7995	-8.0317							
2020-02	-7.9672	-7.8252	-8.3235							
2020-03	-7.9988	-7.6975	-8.2180							
2020-04	-7.9439	-7.7351	-8.5786							
2020-05	-8.4230	-8.8191	-7.7935							
2020-06	-7.2620	-7.8535	-8.4688							
2020-07	-8.5291	-8.1826	-7.6993							
2020-08	-8.5652	-7.7882	-7.8985							
2020-09	-7.5335	-8.1934	-8.2271							
2020-10	-8.0863	-8.0435	-8.0391							
2020-11	-8.8365	-7.8890	-7.6541							
2020-12	-8.5611	-8.2192	-7.1090							
2020-13	-8.6389	-8.3833	-7.3790							
2020-14	-8.6273	-7.9950	-7.0040							
2020-15	-8.3831	-8.1175	-8.1098							
2020-16	-7.6622	-8.7250	-8.0325							
2020-17	-8.5410	-9.3239	-7.3994							
2020-18	-7.3216	-9.2053	-7.6162							
2020-19	-8.4452	-8.7769	-7.1218							
2020-20	-7.9159	-9.2379	-6.9815							
2020-21	-7.9565	-9.4470	-7.4236							
2020-22	-7.9136	-8.6332	-11.1083							
2020-23	-7.7814	-9.2738	-6.9919							
2020-24	-7.7635	-9.5140	-7.2780							
2020-25	-7.3701	-9.4608	-6.5988							
2020-26	-8.0172	-9.4454	-7.8276							
2020-27	-7.7370	-9.4193	-7.7456							
2020-28	-8.6374	-9.3087	-7.9629							

<u>Table 1.</u> The binding free energy of each compound in all three bacteria. A darker green indicates a more favorable (negative) values and red represents a less favorable value.

Allison Adams¹, Derek J. Cashman¹

¹ Tennessee Technological University Department of Chemistry, 55 University Drive, Cookeville, TN 38501-0001

Inhibitors

Β.

Name	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	R ₉	R ₁₀	R ₁₁	R ₁₂	R ₁₃	R ₁₄	R ₁₅
2020-17	Н	CO ₂ H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
2020-18	Н	СОН	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
2020-19	Н	Н	Н	Н	Н	F	Н	Н	Н	Н	Н	Н	Н	Н	Н
2020-20	Н	Н	Н	Н	I	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
2020-21	Н	Н	Н	Н	CO ₂ H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
2020-22	Н	Н	Н	Н	Н	Н	Н	OH	Н	Н	Н	Н	Н	Н	Н
2020-23	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	OH
2020-24	Н	Н	Н	Н	Н	Н	Н	Н	Н	CO ₂ H	Н	Н	Н	Н	Н
2020-25	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	CO ₂ H	Н	Н	Н
2020-26	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	CO ₂ H	Н	Н
2020-27	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	CO ₂ H	Н
2020-28	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	CO ₂ H
Figure 2.	The t	wo base	e con	npound	ds used	and	the	modi	ficat	ions ass	socia	ted with	n each d	compou	und.

The listed compounds were among the top 10 compounds docked in at least one of the bacteria. COH represents an aldehyde. CO_2H represents a carboxylic acid. C_3H_5 represents a cyclopropane.

Lipinski's Rules of 5 and Ligand Interactions

					B. antl	nrac	es																
Name	Molecular Weight (g/mol)	LogP	H-Bond Acceptors	H-Bond Donors	∆G Bind (kcal/mol)	Ligand Interactions																	
2020-11	534.35	2.13	8	2	-8.8365	L25	L21	L29	F96	151	A50	N20	N47	A8	W23	E28	R24	M6	P26	N19		_	
2020-13	451.46	0.35	10	2	-8.6389	K33	R53	E28	L25	L21	L29	L55	V32	M6	F96	V7	Y102	A8	W23	P26	151	R24	
2020-28	505.60	4.07	7	2	-8.6374	K33	R58	L21	L29	V32	R53	E28	L25	N47	N20	151	A50	W23	M6	V7	A8	F96	G57 P56
2020-14	451.46	0.35	10	2	-8.6273	R53	L25	W23	L21	L29	151	F96	L55	M6	V7	Y102	A8	K33	E28	R24	V32		
2020-08	408.46	1.06	8	2	-8.5652	L25	E28	N47	L21	L29	F96	R24	151	A50	N20	V32	Y102	W23	A8	V7	M6		
2020-12	451.46	0.44	10	2	-8.5611	L21	L29	N20	A50	N19	151	F96	M6	N47	V7	Y102	A8	W23	E28	L25	R24		
2020-17	505.60	4.21	7	2	-8.5410	R58	К33	R53	L29	L21	R24	A8	V7	F96	L55	A50	P56	V32	M6	151		-	
2020-07	408.46	1.09	8	2	-8.5291	L21	E28	L29	F96	151	L25	N47	W23	R24	P26	V32	A8	V7	M6	A50	N20		
2020-19	480.59	5.02	6	2	-8.4452	151	L21	L29	F96	L55	K33	R53	V32	N47	A50	N20	A8	M6	L25	W23	V7	R58	
2020-05	451.46	0.27	10	2	-8.4230	R58	K33	R53	L29	L21	L25	A8	V7	N47	M6	F96	151	P26	R24	E28	L55	P56	V32

		_	_		_	_																				
Name	Molecular Weight (g/mol)	LogP	H-Bond Acceptors	H-Bond Donors	ΔG Bind (kcal/mol)										Ligar	nd Inte	eractio	ons								
2020-24	505.60	4.23	7	2	-9.5140	R60	Q28	120	F31	V54	P51	S49	L50	T49	W22	15	L24	A7	W6	P58	R32	L57	A7			
2020-25	505.60	4.10	7	2	-9.4608	R32	R60	120	Q28	F31	V54	S49	P51	L50	T46	15	W22	A8	D27	L24	P58	L58	M36	W6		_
2020-21	505.60	4.21	7	2	-9.4470	Q28	120	F31	W6	Y100	L50	A7	W22	R23	L24	L50	P25	194	D27	S49	V54	P52	T46	R32	R60	L57 P58
2020-26	505.60	4.10	7	2	-9.4454	R60	R32	120	F31	Q28	V55	L24	P51	S49	L50	T46	15	A9	W22	W6	D27	L59		_		
2020-27	505.60	4.07	7	2	-9.4193	R32	R60	Q28	F31	120	D27	V54	L24	15	A7	W6	W22	S49	T46	L50	L57	P51	M36			
2020-17	505.60	4.21	7	2	-9.3239	Q28	120	F31	W22	L24	L50	E111	Y100	H30	W6	D27	R60	R32	A7	T113	L57	V54	S49	P51	T46	L50
2020-28	505.60	4.07	7	2	-9.3087	Q28	120	R32	R60	F31	P58	15	W6	W22	A8	P51	S49	T46	L50	L24	V54	D27	L57	M36		
2020-23	477.59	4.04	6	2	-9.2738	Q28	120	R32	R60	F31	M36	V54	T46	L50	S49	P51	W22	W6	L24	A7	15	D27	P58	L57		
2020-20	588.49	6.07	5	2	-9.2379	Q28	120	F31	W22	15	W6	Y100	A7	T46	S49	L24	L57	L50	D27	V54	R32	P51	R23	P25	P58	R60
2020-18	490.61	4.94	6	2	-9.2053	Q28	120	F31	V54	L50	D27	L57	P51	R32	L24	R60	W6	E111	T113	T46	A7	W22	15	H30	Y100	

	S. aureus																			
Name	Molecular Weight (g/mol)	LogP	H-Bond Acceptors	H-Bond Donors	ΔG Bind (kcal/mol)	DI) Ligand Interactions														
2020-22	477.59	4.53	6	2	-11.1083	K32	L54	R57	L28	К29	K52	P25	P55	S35	T36	V31				
2020-04	534.35	2.18	8	2	-8.5786	L20	L29	F92	150	S49	T46	V6	V31	A7	L5	D27	W22	L24	H23	
2020-06	408.46	1.06	8	2	-8.4688	L28	L20	L54	F92	P25	150	S49	T46	K52	K32	K29	R57	V31		
2020-02	487.35	1.88	8	2	-8.3235	L20	F92	L28	H23	151	S50	T46	D27	V31	V6	A7	L5	W22		
2020-09	426.45	1.10	9	2	-8.2271	L20	L28	S49	F92	150	Q19	H23	T46	D27	W22	T111	V31	L54	A7	V6
2020-03	534.35	2.19	8	2	-8.2180	L20	L28	150	H23	F92	S51	T46	L5	A7	V6	W22	V31	L54	D27	
2020-15	436.47	0.99	10	2	-8.1098	150	L20	L29	F92	L54	K53	S49	T46	N18	Q19	A7	V6	V31	L5	D27
2020-10	442.90	1.68	8	2	-8.0391	150	L20	L28	L54	S49	K52	F92	N18	Q19	T46	L5	A7	V6	V31	D27
2020-16	436.47	1.00	10	2	-8.0325	R57	L28	L54	L20	150	F92	L54	V6	V31	A7	K32	D27	P55		
2020-01	442.90	1.79	8	2	-8.0317	L20	L28	F92	H23	150	S49	T46	L5	V6	A7	V31	D27		-	

Table 2. The top 10 compounds for each bacteria analyzed according to Lipinski's Rules of 5, as well as according to the ligand interactions. For the ligand interactions, red indicates the amino acid is among the top 25% evolutionary trace in the bacteria, green indicates the frustration density is over 20%, blue indicates an overlap of the two, white indicates it falls into neither category. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (March 2001). "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings". Adv. Drug Deliv. Rev. 46 (1–3): 3–26. doi:10.1016/S0169-409X(00)00129-0. PMID *11259830*.

M. tuberculos	sis
---------------	-----

This research is supported by the Tennessee Tech University Department of Chemistry and Tennessee Tech University Honors Department. MOE 2020 software was provided by a grant from Chemical Computing, Ltd. (Montreal, Quebec, Canada). The authors gratefully acknowledge Dr. Scott Northrup (Professor Emeritus) for providing computer hardware in the lab.

Chemistry **TENNESSEE TECH**

Top Compounds

Figure 3. The top compound for each bacteria docked in the bacteria and the ligand interactions for each compound. A and B display 2020-11 in *B. anthraces*. C and D display 2020-24 in *M.* tuberculosis. E and F display 2020-22 in *S. aureus*. Green ribbons indicate amino acid residues with 20% or greater energetic frustration, red ribbons indicate residues in the top 20% of evolutionary importance scores, and blue ribbons indicate residues with both.

Conclusion and Future Research

The top compounds all tended to bond in areas of high frustration and evolutionary trace. This indicates that these metrics can be used to predict binding sites.

The compounds generally follow Lipinski's Rules of Five (small molecules should have a molecular weight of less than 500 g/mol, a LogP < 5, less than five hydrogen bond donors, and less than 10 hydrogen bond acceptors). There are some that are outside of some of these guidelines, but they are generally close.

• Of the top 28 compounds, two were among the top 10 for two bacteria, 2020-17 and 2020-28, which were both among the top 10 for *B. anthraces* and *M. tuberculosis*.

• While there was not a compound that was among the top 10 for all three, there were several that had high binding free energy for all three, including 2020-15, 2020-10, 2020-22, and 2020-28.

• Future research would include conducting molecular dynamic simulations on the top compounds in order to assess the protein dynamic and stability of each conformation.

Acknowledgements