
Dynamic Address Validation Array (DAVA): A Moving Target
Defense Protocol for CAN bus

Richard Brown, Alex Marti, Chris Jenkins, Advisor: Dr. Susmit Shannigrahi
Department of Computer Science, Tennessee Tech University

Dynamic Address Validation Array (DAVA) is a novel moving target defense

protocol for the Controller Area Network Bus (CAN bus). DAVA’s primary goal is

to mitigate the common CAN bus vulnerability of an unauthorized entity

misappropriating components in the vehicle through sniffing and reusing ECU

IDs for replaying messages. Using a dynamically allocated array stored in the

ECU that is updated and validated frequently, DAVA limits an attacker’s ability

to reuse ECU IDs for replay attacks. The protocol strives to be minimally

invasive and lightweight for application in CAN bus while still being secure. The

following discusses the DAVA protocol, a proof of concept implementation, and

initial performance measurements. The implementation will explain how DAVA

is able to provide a robust security framework for CAN bus without the need

for a large amount of storage or CAN bus standard modification.

ABSTRACT

INTRODUCTION

OBJECTIVES

• Design a lightweight CAN security protocol that mitigates sniffing the bus
and replay attacks based off Moving Target Defense ideas

• Create a simulator that demonstrates the basic functions of the protocol.
• Evaluate the protocol by identifying its time complexity, space complexity,

and security effectiveness provided.

METHODOLOGY

Figure 2: MTD arrays updating a Device ID

• DAVA executes in three phases:
• Initialization Phase

• All nodes on the CAN bus create
an MTD array that stores
information of every other node
on the bus.

• With this information, every node
knows who they are and who the
other nodes on the bus are.

• Operational Phase

• Normal CAN bus activity where
nodes use the device IDs in their
MTD array to identify themselves
and others when addressing and
sending messages.

• Update Phase

• When any node receives a
message, all nodes on the bus will
change the device ID of the
recipient to a random number
based off a shared seed to ensure
the ID is the same across the bus.

EVALUATION

[1] 2020. ISO 11898-1:2015. https://www.iso.org/standard/63648.html [Online;
accessed 13. Jun. 2020].
[2] Steve Corrigan HPL. 2002. Introduction to the controller area network (CAN).
Appl. Rep. SLOA101 (2002), 1–17.
[3] Roderick Currie. 2017. Hacking the can bus: basic manipulation of a modern
automobile through can bus reverse engineering. SANS Institute (2017).

REFERENCES

CONCLUSION & FUTURE WORK

• DAVA prevents reconnaissance and replay attacks.

• Reliable and lightweight design, allowing for easy adoption to the CAN
standard.

• Future work

• Investigate better randomization seeds and worst case scenarios

• Utilize a random number generator that is closer to more random.

• Implement DAVA on a CAN bus emulator

• The Controller Area Network bus (CAN bus) [1] is a non-IP based network
that allows many devices and microcontrollers to communicate using the
CAN standard[1] and is widely used in numerous every-day products.

• CAN has several features that make it ideal for these use cases including
robustness, priority of messages, and the ability to support real-time
communication with deadlines.

• Space Complexity

• 20 Devices:

• >= 336 Bytes per device

• >= 6416 Bytes per bus

• 100 Devices:

• >= 1,616 Bytes per device

• >= 160,016 Bytes per bus

• Time Complexity is linear.

Figure 1: DAVA Flowchart

• The CAN standard lacks encryption or authentication methods [2] due to the
limited processing capacity of the microcontrollers on the bus and the fact
that CAN uses eight-byte packets that are too small for most standard
security mechanisms [2].

• The CAN packets arrive and are decoded within a deadline, making the use
of multiple packets for carrying an encrypted payload difficult [3].

• Due to this lack of security, an attacker can sniff the bus for the device IDs of
the devices and use them to send malicious messages to seize control of
various components of the bus.

• A mitigation of the CAN standard’s vulnerabilities must not be allowed to
compromise the speed of the CAN protocol.

PROBLEM DEFINITION

SIMULATOR IMPLEMENTATION

• Designed a basic CAN bus simulator written in C to test DAVA’s functionality
as a proof of concept.

• Executes on Ubuntu 18.04 virtual machine with a single 2.6 GHz processor.
• Calculates average update time with a bus of two ECUs.

• Average update time is 0.3 milliseconds.

SECURITY RESULTS

• Sniffing the bus is no longer effective, an attacker can read the messages
sent on the bus, but will not know who is the sender and recipient.

• Nearly impossible to execute a malicious command on any CAN bus nodes.

• Replay attacks are no longer possible when the IDs change after every
message.

• All device IDs become one-time-use.

• There are 2^29-1 device IDs that would need to be tried. DAVA imposes 1
in 536,870, 911 chance of performing a successful attack

• We would like to thank Chris Jenkins from Sandia National Labs for
supervising our research and for providing mentorship in formulating
Moving Target Defense algorithms.

• Every device on the bus is given an initialization file that is inputted prior
to use that contains the number of devices on the CAN bus, the device
IDs of all devices, the lower and upper bounds for all device IDs, and a
randomization seed.

• The MTD Array that every node generates at the initialization phase is
the key to DAVA’s security.
• The array contains a Device ID, the lower bound, the upper bound, and the

original device ID for every node on the bus.

Figure 3: DAVA protocol properties

