

Global Survey and Distribution of Pennsylvanian and Mississippian Microbial Mounds Clarice Kiser and Jeannette Luna

Earth Sciences Department, Tennessee Tech University, PO Box 5062, Cookeville, TN 38505

Introduction

This study serves to build a global database of microbial mounds from these geologic eras, which span 60 million years. This database will include geographic data from scientific studies of microbial mound structures from the last 31 years (1990-2021). We can construct paleogeographic maps and compare the ecology, location, and sedimentary character of each mound. This is done in order to find similarities in conditions on ancient shallow marine slopes and determine the fundamental controls on mound formation.

Figure 1: An example of one type of microbial mound material, stromatolites. The mounds in this study have varying compositions. (sciencesourceimages.com).

Microbial Mounds

Microbial mounds, including Waulsortian and Waulsortian-like mounds, are lithified structures composed of carbonate compounds and ancient microbes that aided in the production of those compounds (Figure 2). They commonly developed in shallow sea environments of the Pennsylvanian (323 to 299 Ma) and Mississippian (359 to 323 Ma) era strata due to the photosynthetic tendencies of cyanobacteria and its environmental symbionts that require marine environments (i.e.: phylloid algae). The fossilized remnants can create structures like stromatolites (Figure 1) or reflect geometries from other microbial growth. *Figure 2:* A photomicrograph

of the composition of a microbial mud mound. Small brachiopods, crinoids, and bryozoans are visible (Samankassou and West, 2002).

Methods

Extensive data mining was done using research tools including Tennessee Tech Library, JSTOR, and Google Scholar to find previous peer reviewed studies concerning stromatolitic and microbial mound formations. Key search terms included the following: microbial mats, microbial mounds, mud mounds, Carboniferous, Pennsylvanian, Mississippian, and stromatolites.

The locality of the mounds studied as well as various occurrence notes, latitude and longitude, and names of the sites were recorded in a spreadsheet, pictured in Figure 4. Then, the latitude and longitude of each site was pinned in a Google Earth folder with a corresponding name. If no latitude nor longitude was found, locality information was used to determine the approximate site location. An aerial view of the sites is pictured in Figure 3 from Google Earth.

Google Earth Data

pins show documented mound localities in the NE United States.

Spreadsheet Data

Nickname	Country	Latitude	Longitude	Note	Reference
Longdianshan Hill	Liuzhou, Guangxi, China				Aretz, Poty, Devuyst, Hance and Hou, 2012
Ramp Creek Formation	Indiana, United States	38°57'9.42"N	86°22'3.96"W	"Waulsortian mounds"	Brown & Dodd 1990
Bluefield Formation	West Virginia, United States	38°17'29.01"N	80° 6'12.52"W	Girvanella-Bryozoan Mud mounds	Christopher 1990
Lillo Formation	Puebla de Lillo, Spain	43°0'2.6964"N	5°18'9.695"W	Phylloid algal mounds	Corrochano and Armenteros 2017
Agrio Formation	Patagonia, Argentina	37° 44′ 54″ S	69° 56' 9" W	Rippled beds also found	Fernandez and Pazos 2013
Fort Payne Formation	Kentucky, United States	36°54′2.7 N	85°25′49.1" W	Four localities mentioned, carbonate mud mounds only associated with this one	Hannon and Meyer 2014
Lumzhai mound	Lumzhai village, South China	25°30′ 27.0" N	106°14′02.0″E		Huang, Zhang, Guan, Miao, Chen, Yang, Li and Gong 2019
Zhongxinzhai mound	Zhongxinzhai village, South China	25°30′33.5" N	106°12′08.0″E		Huang, Zhang, Guan, Miao, Chen, Yang, Li and Gong 2019
Rio do Sul Formation	Parana Basin, Brazil	N/A	N/A	23 samples of MISS structures taken, individual locations not published	Noll and Netto 2018
Joggins Formation	Nova Scotia, Canada	45°45'8.66"N	64°24'48.12"W	7	Prescott, Stimson, Dafoe, Gibling, Macrae, Calder and Herbert 2014
Wyandotte-Johnson #1	Kansas, United States	39° 2'28.81"N	94°47'23.88"W	/ Phylloid algal mounds	Samankassou and West 2002
Wyandotte-Johnson #2	Kansas, United States	39° 2'27.15"N	94°47'24.68"W	Phylloid algal mounds	Samankassou and West 2002
Wyandotte-Johnsone #3	Kansas, United States	39° 2'27.55"N	94°47'26.34"W	Phylloid algal mounds	Samankassou and West 2002
Frisbie				Phylloid algal mounds	Samankassou and West 2003
Snaibar	Kansas, United States	37°49'18.70"N	94°58'44.41"W	Phylloid algal mounds, exact site approximated	Samankassou and West 2003
Winterset				Phylloid algal mounds	Samankassou and West 2003
Captain Creek				Phylloid algal mounds	Samankassou and West 2003
Spring Hill				Phylloid algal mounds	Samankassou and West 2003
Lillo Formation	Puebla de Lillo, Spain	43°0'2.6964"N	5°18'9.695"W	Exact location approximated	Samankassou, Allmen, and Bahamonde 2013
Carnic Alps	Carnic Alps, Austria	46°34'23.40"N	12°53'18.18"E	5 sample sites along the approximated location	Samankassou 1998
Mengcun	Laibin, Guangxi, China	23°31'9.45"N	109°24'36.12"E	Very approximated site, was unable to find exact outcrop	Shen and Quing 2008
Helv	Laibin, Guangxi, China	23°30'30.96"N	109°30'23.10"E	Very approximated site, was unable to find exact outcrop	Shen and Quing 2008
Tabainout Complex	Khenifra, Morrocco	N32°56'59"	W5°50'35''		Somerville, Rodriguez, Said, and Cozar 2012
Alamogordo Member	Sacramento Mountains, New Mexico	33° 7'37.22"N	105°45'5.21"W	Location is approximate.	Wu and Chafetz 2002
Shangdan Section	Inner Mongolia	40° 0'0.00"N	105° 0'0.00"E	Exact location approximated	Yan, Liu, Sun, Weng, and Huang 2017

Moving forward

- Gohier, Francois. "Fossil Stromatolites." Science Source Stock Photos & Video, www.sciencesource.com/archive/Image/Fossil-Stromatolites-SS2376768.html. Web.

- Google Earth, Google, earth.google.com/. Web.

- Pratt, Brian R. "Stromatolitic Framework of Carbonate Mud-Mounds." SEPM Journal of Sedimentary Research, Vol. 52, 1982. Web.

- Roylance, Michael H. (2). "Depositional and Diagenetic History of a Pennsylvanian Algal-Mound Complex: Bug and Papoose Canyon Fields, Paradox Basin, Utah and Colorado (1)." AAPG Bulletin, vol. 74, 1990. Web.

- Samankassou, Elias, and Ronald R West. "Construction versus Accumulation in Phylloid Algal Mounds: an Example of a Small Constructed Mound in the Pennsylvanian of Kansas, USA." Palaeogeography, Palaeoclimatology, *Palaeoecology*, vol. 185, no. 3-4, 2002, pp. 379–389. Web.

*See spreadsheet data for other papers used in data collection.

The next step in this study is to amass more articles through further research and compile the data points into a world map format. Certain papers like Roylance (1990) have coordinates that need to be converted into a proper latitude and longitude format in order to become a data point. In an article by Pratt (1982) contains a table of various mounds from other papers, so this study will be scrutinized to identify each example and add its location to the data. Lastly, the databases used to find the articles will be scoured for more papers with different variations.

References

Figure 4: Spreadsheet records of the sites studied. Each record includes a name for the site, general locality, latitude and longitude (when available), any notes on the site, and the paper in which the site is studied. Each row highlighted green represents a mound specifically paired with fossilized phylloid algae.