

- [1] Sadeque Reza Khan, Sumanth Kumar Pavuluri, and Marc P. Y. Desmulliez. Accurate Modeling of Coil Inductance for Near-Field Wireless Power Transfer. *IEEE Transactions on Microwave Theory and Techniques*, pages 1–12, 2018.
- [2] M. E. Bima, I. Bhattacharya, W. O. Adepoju, and T. Banik. Effect of coil parameters on layered dd coil for efficient wireless power transfer. *IEEE Letters on Electromagnetic Compatibility Practice and Applications*, pages 1–1, 2021.

An AI-Enabled Control for Dynamic Wireless Power Transfer

Muhammad Enagi Bima, Bhattacharya Indranil Electrical and Computer Engineering Department

le 1: Estimated values of Coupling coefficient based on location						
bel	$X1 \ (mm)$	$Y1 \ (mm)$	$X2 \ (mm)$	Y2~(mm)	coupl1	coup2
51	-85	85	75	85	0.034355	0.034941
52	-85	-67.5	75	-67.5	0.01597	0.016942
3	-85	237.5	75	237.5	0.01439	0.014388
4	-80	-445	80	-140	0.00854	0.00605
5	-80	-445	-80	165	0.0085	0.0283

ble 2: Circuit parameters					
	Parameter	Value			
	Frequency	$85 \ kHz$			
	L_s, L_p	$158 \ \mu H$			
	Lout	$1.75 \ \mu H$			
	C_s, C_p	25 nF			
	C_f, C_{fo}	22.3 nF			

JAYA	Ι	LTSPICE		
Pout(W)	Eff	Pout(W)	Eff	
811.71	100	811.49	99.9	
2357	99.87	2360	99.98	
2475	99.82	92375	100	
23944	34.36	2405	26	
1293	99.19	1301.38	99.98	

Label	CSA	L	LTSPICE		
	Pout(W)	Eff	Pout(W)	Eff	
S1	1066.56	99.5	1121.3	99.7	
S2	2408.08	97.38	2458.4	99.5	
S3	2358.93	95.4	2392.4	96.97	
S4	12	21	12.63	6.1	
S5	1173.51	97.29	1203	95.2	

ACKNOWLEDGMENT

Support from funds provided by the State of Tennessee to TN Tech in recognition of the University Carnegie Classification, R2, is appreciated.

T	R.	A	N	SI
			90	
			85	_
			80	
			75	
		encv	` 70	
		Effici	65	
			60	
			55	
			50	/
			45	0
	Т			IC
		5 (72
	1.	Ī	² 0]	int
		F	11 M 7 i e	vay 5.1
		V	va	sta
	2	Г	Γħ	e f
	•	r	na	ke
		Ę	get	tra
		r	na	xir
	3.	F	Eq	uat
		ł		vea
		(ç)tn ret	ier. is ti
	_	5) ~ ~	
C	\cap	N		
	•	ן ז	olii	ng
	•	ת 1	ь. Б.	0 0
		t	he	е рс
	•	N	Лa	int
		r	nı	ım

FUTURE RESEARCH

SION

of maximum power (See Fig. 9) does not ys fall at point of Maximum eficiency (See **10**) which is very important to avoid power ge.

feedback control scheme can be used to the WPT system operate within the taransmit power range and at a point between mum efficiency and maximum power.

tion (1) shows the transmit circuits not only an impact on the receiver, but even on each A fraction of the impedance of circuit 1 ranslated into circuit 2 and vice versa.

USION

smit power fluctuates significantly as coucoefficient changes

oting a control scheme can be used to keep ower within intended operating range and

tain an optimal maximum efficiency maxipower tradeoff

• An optimized implementation of the algorithm on a hardware such as an FPGA.

• Integration with Metamaterials.

• Tunable inductors and resistors at high operating frequency

These will further drive the prospects of having an efficient dynamic wireless power transfer.