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1. INTRODUCTION 4. METHODOLOGY
Industrial control systems (ICS) describe the use of network
connectivity to integrate hardware and software in order to
control critical infrastructure such as chemical plant, electricity
distribution, and nuclear facilities. The prevalence of internet of
things technology and networked sensors in many ICS have
exposed critical infrastructure to several malicious activities and
cyber threats.

Because ICS control critical infrastructure, ICS attacks can cause
irreparable damage to enterprises and even loss human life.
Programmable logic controllers (PLCs) which monitor and control
the physical processes of ICS have unique architecture which
makes it difficult to apply traditional techniques for ICS
protection. This research work, therefore, proposes a novel
approach using neural networks with one-class objective
function for anomaly detection in ICS. This approach was
evaluated on a real-world ICS dataset: the Secure Water
Treatment (SWaT) dataset.

Fig. 1: Typical ICS Network

2. OBJECTIVES
• Present a neural network with one-class objective function

for anomaly detection in ICS
• Evaluate the network on a real-world dataset (SWaT dataset)
• Compare our approach against previous works

3. DATASET
The SWaT dataset is a current and widely used open-source
dataset for ICS security research. It was collected from a scaled-
down water treatment plant by [1] as shown in Fig. 2.

The testbed consisted of 25 sensors and 26 actuators. The data
was recorded for 11 days in which 36 different attacks were
injected to compromise about 6% of the dataset.

Fig. 2: SWaT Testbed [1]

A. Machine Learning Algorithm
This research work employs an unsupervised machine
learning technique which combines the abilities of
neural networks to learn complex relationships with a
one-class objective function which then separates the
anomalous instances from the normal conditions.
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Fig. 3: Algorithm of the model

From Fig. 3, r is first initialized, and the model uses
backpropagation to learn the parameters (w, V) of the
neural network. The model then updates r and once
convergence is achieved, the scoring function 𝑆!: ,
labels the data points as normal and anomalous
instances. Fig. 4 represents the model architecture of
the neural network with one-class objective function.

Fig. 4: Model Architecture

B. Anomaly Detection Framework

Where the parameters of Equation 1 have already
been defined in Fig. 3 and 𝛼 is a hyper-parameter for
controlling the weight matrix, V.

Based on the optimization problem of one-class SVM
and the minimization algorithm proposed in [2], the
objective function can be formulated as:

(1)

The SWaT dataset was first preprocessed by normalizing all
the data points. Only the normal instances were used for
training the model in order to enable the network to learn
the normal pattern. The performance of the model was then
evaluated on a second log of the SWaT dataset containing
both normal and anomalous instances as shown in Fig. 5.

Fig. 5: Framework of Attack Detection Approach

It is worth noting that the dataset was pre-processed similar
to what has been done in previous works. As a result, we
were able to compare the performance of our approach to
other applied approaches in literature that have been
developed using the SWaT dataset.

5. RESULTS AND DISCUSSION
Several simulations were run and the hyper-parameters of
the architecture with the best model is shown in table 1.

The performance metrics of evaluation were precision,
recall and F1-score. Table 2 summarizes the results of our
approach as compared to other state-of-the-art techniques.

Method F1-score Precision Recall Complexity
NN [3] 0.812 0.976 0.696 Low
SVM [4] 0.796 0.925 0.699 High
ID-CNN [5] 0.860 0.867 0.854 High
RNN [4] 0.802 0.982 0.678 High
TABOR [6] 0.823 0.862 0.788 Average
KNN [7] 0.350 0.348 0.348 Average
FB [7] 0.360 0.358 0.358 Average
AE [7] 0.520 0.516 0.516 Average
EGAN [7] 0.510 0.406 0.677 High
DIF [8] 0.882 0.935 0.835 Average
NN-one class 0.800 0.950 0.710 Average

Hidden layers(k) nu Alpha (𝛼) Activation Funct. g(.) r value
32 0.016 9 Sigmoid 0.1

𝒓 𝟎Table 1: Hyper-parameters of the best model

Table 2: Results comparison between different detection
methods on the SWaT dataset

Attack
No. NN RNN SVM TABOR

ID-
CNN DIF

NN-
One
class

17 0.98 0.99 1.00 0.99 1.00 1.00 0.96
18 0.71 0.88 0.88 0 1.00 0.82 0.02
19 0.92 0 0 0 0.017 0.34 0.69
20 0.29 0 0.01 0 0.02 1.00 1.00
21 0.99 0 0 0.99 1.00 0.17 0.03
22 0 0 0 0.20 0.06 0 0
23 0.03 0.94 0.94 1.00 1.00 1.00 1.00
24 0.87 0 0 0 0 1.00 1.00
25 0.83 0 0 0.99 1.00 0 1.00
26 0.78 0 0 0 0.30 1.00 1.00
27 0.33 0 0.91 0 0.94 1.00 0.93
28 0.84 0 0 0.88 0.89 0.43 0.88
29 0 0 0 0.60 0.99 0 0.62
30 0 0 0 0.26 0 0.95 0.95
31 0.81 0 0.12 0.89 0.88 0.93 1.00
32 0.84 1.00 1.00 0.99 0.90 1.00 1.00
33 0.77 0.92 0.93 0.99 1.00 1.00 1.00
34 0.84 0.94 0 0.40 0.91 1.00 1.00
35 0.78 0.93 0.93 0.99 1.00 1.00 1.00
36 0 0 0.36 0 0.64 0.63 0.79

6. CONCLUSION

Table 3: Recall values of the different approaches

From Table 3, it can be realized that our model was
able to detect most of the last 20 attacks. Our model
had the highest recall on the attacks 20, 23 – 26 and
30 - 36, i.e., achieving 100% recall in most cases.
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The viability of anomaly detection in ICS based on
neural network with one-class objective function is
demonstrated. The model framework was evaluated
on the SWaT dataset. In comparison with previous
works, our technique showed significant
improvement in terms of attack detection capability
and computational complexity, and this shows that
the technique is suitable for use in real ICS scenario.

Notations
𝑋!= training data
𝑟 = bias of hyperplane
w = scalar output
V = weight matrix
𝑆!: = Scoring function
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