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INTRODUCTION

Energy consumption and heat are crucial limiting factors in
modern digital systems. Landauer [1] showed that any
irreversible logic gate dissipates kT In 2 Joules of energy with

each irreversible bit . Therefore, reversible logic is required for
ultimate energy efficiency in computational systems.
Conservative logic gates [2] — a gate whose Hamming weights
for inputs and outputs are equal — are theoretically energy
neutral in that output signal energy can be derived from input
signal energy.

BACKGROUND

A well-known conservative reversible logic (CRL) gate is the
Fredkin gate [2]. The Fredkin gate (FG) is a “controlled-swap”
whereby one signal determines whether two other signals are
passed “straight-through” or “swapped”. The FG is often used
as an operator in many quantum computing algorithmes.
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Fig. 1: Fredkin gate (L) and its two operational states

Previous research, including [2] and [3], have proposed FG
implementations of common digital logic operators. Later,
additional FG designs for logical primitives were proposed and
used in the design of more complex logical operations [3].
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Fig. 2: FG implementations of digital logic primitive operations (L) to (R):

NOT/fan-out, OR2, and AND?2

To date, proposed FG designs were determined in ad-hoc
manner. No systematic study of FG implementations for
traditional digital logic operations has been undertaken. It is not
known if the prior proposed FG designs are unique and/or
optimal.
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Fig. 3: FG implementations of digital logic primitive XOR2/XNOR2

OBJECTIVES

Determine if existing FG implementations of traditional digital

ogical operations are unique
-ind more efficient FG implementations of traditional logical
operations, if they exist
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4. METHODOLOGY

To find FG implementations of traditional logical
operations, circuits were simulated and circuit
outputs were recorded for different combinations of
gate inputs and gate connections.

The number of variables for each circuit were
specified, but variable placement can be varied. At
least one function input is required to impinge on the
first gate. Additional function inputs can be applied at
any other location in the circuit.

Like functional inputs, Boolean constants can be
placed at any point in the circuit.
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Fig. 4: FG with control signal “inverted”

The FG may be implemented in two ways — based on
the interpretation of the “control” signal, A. See Fig.
1. The signals B and C may also be exchanged with an
active-low A, as shown in Fig 4. This study considered
both FG implementations.

At each additional stage appended to the circuit, at
least one, and up to all three, of the inputs of a FG
can be driven by the outputs of the previous gate. The
inputs of the first gate can be three variables, two
variables and a constant, or one variable and two
constants. This study considered all possible ways to
connect subsequent FG stages.

At each stage, the gate output is computed according
to its inputs and behavior. If the desired digital
function output is not found, an additional FG stage is
added. For each stage, unused variables, constants,
and the previous gate’s outputs are combined in sets
of three. For each combination, the inputs are
considered in each of the six possible ways to order
them. Both FG implementations (Figs. 1 and 4) were
considered.

In this study, combinations of variables, constants,
gates, and wirings between gates were built to a
specified depth of gates. Additional gates were added
in the search until logical operations of interest in this
search had been found.

5. RESULTS AND DISCUSSION

All two-input logical functions can be implemented in one
or two FGs. Four two-input logic functions require two FGs
with the balance capable of being formed with a single FG.
This study found that the previously published FG forms for
primitive logical operation AND2 and OR2 seen in Figs. 2

and 3 to be optimal.
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Fig. 5: FG circuits: AND2 with F2 (L) and AND2 with F4 (R)

For the two-input logical functions F2 and F4, four unique
FG designs were discovered. These functions show up in
conjunction with AND2, and shown in Fig. 5.
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Fig. 6: FG circuits: OR2 with F11 (L), and OR2 with F13 (R)

For two-input logical functions F11 and F13, four unique FG
designs were discovered. Functions F11 and F13 are created
simultaneously with OR2, and shown in Fig. 6.

:A/- - A+B
0 -

—A —AeB  A-

o F

Fig. 7: FG circuits: AND2 with NAND2 (L) and OR2 with NOR2 (R)

The NAND2 and NOR2 functions, like XOR2 and XNOR2 in
Fig. 3 require two FGs. These newly discovered FG designs
are seen in Fig. 7. Furthermore, the AND2 and OR2 gates

can be used with the FG inverter implementation to create
NAND2 and NOR2 simultaneously.

A search of all possible FG implementations for all two-
input logical functions was performed. Every one of the
possible two-input logical function possess multiple FG
implementations. Table 1 shows the number of FG designs
for the non-trivial two-input logical operations.

Function | _Fn_|_Number _ __Function | Fn_
3

AND2 F1 XNOR2 F9 32
NAND?2 F14 96 Implication F11 4
OR2 F7 8 F13 4
NOR2 F8 96 Inhibition F2 4
XOR2 F6 32 F4 4

Table 1: Number of distinct FG implementations of the two-
input logical operations. Trivial and 1-input functions FO (null),

F15 (identity), F3 (A), F5 (B), F10 (NOT B) and F12 (NOT A) are
not considered.
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There are 256 possible logical functions over three
inputs. This work also found all possible FG
implementations of three-input functions. Table 2
shows the number of FG designs for common
three-input logical operators.

Function |_Fn_| Number l§ _Function |_Fn__
192

AND3 F1 MAJ3 F23 1536
NAND3 F254 2688 FA_CARRY3 F23 1536
OR3 F127 192 FA_SUM3 F105 384
NOR3 F128 2688 OAIl21 F234 1408
XOR3 F105 384 AOI21 F168 1408
XNOR3 F150 384

Table 2: Number of distinct FG implementations of
the common three-input operations.

Of the functions listed in the Table 2, only AND3 and
OR3 can be implemented in two FGs, the remainder
require three FGs. 32 of the 256 possible three-input
operators require one FG, 122 require two FGs, and
85 require three FGs. F22, F41, F73, F97, F104, F107,
F109, F121, F134, F146, F148, F151, F158, F182,
F214, F232 and F233 require more than three FGs.
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CONCLUSIONS

This work describes the first-ever known systematic
study of FG implementations of two-input and three-
input logical operators. All possible FG circuit designs
with one through three FGs were derived and
examined. Previously published logical primitive
operations in FGs were shown to be optimal. Several
new optimal FG designs for logical primitive function
were discovered.

No published work to date has claimed to have found
optimal FG designs for three-input logical operators.
This study has identified the optimal FG designs for
nearly all of the 256 possible three-input logical
operations, including many three-input functions
commonly used in nearly all digital designs.

The study also found that FG designs for all logical
operators examined exist using both variations of the
Fredkin gate.
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