

OBJECTIVES

- Implement a novel metamaterial (Ferrite-core) based wireless power transfer (WPT) system.
- Estimate optimal metamaterial (MM) size for Improved WPT performance (power received and power transmission efficiency, PTE).
- Develop AI-based algorithms to improve the amount of power received and PTE

INTRODUCTION

Wireless Power Transfer (WPT) has become a focal point of numerous research interests and power transmission in consumer electronics [1, 3] and industrial applications [2].

Figure 1: Common Application of WPT

Limitations: Poor Performance over a wide transfer

Proposed Solution:

• Use a negative refractive index material to increase the field density and

converge the flux line, directionally.

- Carries with it the risk of exposure to high frequency electromagnetic radia-
- Shielding

Involves providing an alternate path for magnetic field to pass through thereby protecting the intended object or region. Typically done by using

• Shield the field **Performance Enhancement with Meta-material** A notable property of meta-materials is negative refractive index. This is responsible for its inherently negative effective permeability and evanes-

REFERENCES

- [1] Bingnan Wang, Koon Hoo Teo, Tamotsu Nishino, William Yerazunis, John Barnwell, and Jinyun Zhang. Experiments on wireless power transfer with metamaterials. *Applied Physics Letters*, 98(25):254101, jun 2011.
- [2] Yan Zhao, Varut Vutipongsatorn, and Ekachai Leelarasmee. Improving the efficiency of wireless power transfer systems using metamaterials. In 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. IEEE, may 2013.
- [3] M. E. Bima, I. Bhattacharya, W. O. Adepoju, and T. Banik. Effect of coil parameters on layered dd coil for efficient wireless power transfer. *IEEE Letters on Electromagnetic Compatibility Practice and Applications*, pages 1–1, 2021.

Novel Metamaterial Design and AI-based Estimation of Coil Parameters for Efficient Wireless Power Transfer

Webster O. Adepoju, Indranil Bhattacharya, Muhammad E. Bima, Trapa Banik, Ebrahim E. Nasr Electrical and Computer Engineering Department

SYSTEM MODELING

Figure 3: Schematic of Proposed MM Ferrite core with rectangular coil

Figure 4: Modeling of Coil Misalignment. d_o, d_1, d_2 denote 25%, 50% and 75% coil-MM misalignment, respectively

Efficiency of Power Transfer

	L _{in} 		<i>C</i> ₂		
V_{s}	C_{p}	Lp	$^{3}L_{s}$ =	- <i>C</i> s	$\begin{bmatrix} R_L \end{bmatrix}$

• Negative refractive index enhances high effective permeability of the MM Ferrite-core [1].

• Evanescent wave property of the MM engenders amplification of the magnetic field due to the transmitter, straightens the field pattern and converges the flux lines at the receiver

• Improved power and efficiency.

Where ω_s is the operating frequency, *k* coupling coefficient, L_p , L_s inductance of coils 1 and 2, R_p , R_L source and load resistance.

Figure 5: Resonant LCCL WPT circuit diagram $L_m = \frac{N\mu}{I} \int \vec{H} \cdot dA \quad (2)$ $L_{TX-TX} = L_{tx-tx} + L_m \quad (3)$

The expressions (2) and (3) denote the model equation of L_m , A is the evanescent inductance and surface area of the meta-material respectively, His the magnetic field strength. Subscripts represent the layers involved in the interaction.

MODEL SIMULATION

gineering (ECE) and Center for Energy Systems Research (CESR) of Tennessee Tech

These are intended to operate in a dynamic wireless power transfer situation.

MAGNETIC FLUX LINES

Figure 17: Diamet ric View of the WPT Design With (R) and Without (L) Misalign-

Figure 18: Magnetic-Field Distribution for Perfect Alignment (L) & 75% Misalignment

Fig.16 shows MM enhancing a uni-directional travel and coupling of the flux line towards the *Rx*-coil.

DISCUSSION OF RESULTS

• Novel metamaterial infused magnetic coil demonstrates higher mutual inductance, transfer power, and power transfer efficiency than other magnetic coils

• Its inherent evanescent wave increases the magnetic field density due to the transmiting coil, straightens the flux lines and enhances a coupling of the same at

• High magnetic field density corresponds to increased mutual inductance, and power sharing. This explains why the MM has better WPT performance than rect-

• Misalignment between MM and magnetic coil affects the mutual inductance and transfer power. High misalignment translates to low mutual inductance and

• Nearly 100% matching of Matlab and Lt-spice simulation result. This effectively validates the accuracy of the AI-based optimization algorithm.

• Significantly high mutual inductance and transfer power had been achieved with MM based WPT compared to coil design

• High mutual inductance, transfer power and efficiency with small sample size of MM Ferrite-core brings up the prospect of cost savings in material fab-

• Using Ferrite on the transmitting side only, performed almost as good as when on both sides • Improved WPT model performance (received power and transmission efficiency) with AI-based algorithm

FUTURE RESEARCH

Prototype implementation of dynamic wireless charg-

• Metamaterial infused LDD coil

• AI-based optimization for improved power.