
SBTWs generated using two-mode excitation have 
displacement fields that are primarily made up of a combination 
of the two adjacent mode shapes that occur at the natural 
frequencies above and below the excitation frequency. Which 
mode shapes combine depends on the frequency used and the 
position of the actuators. The frequencies selected for this 
investigation are listed in Table 1.

Investigation of Coinciding Orthogonal Two-Dimensional Structure-Borne Traveling Waves

How do we generate traveling waves?
Traveling waves can be generated using several different methods. 
For the purposes of this investigation, we use two-mode excitation. 
Two-mode excitation uses the modal properties of continuous 
structures to generate steady-state structure-borne traveling waves 
(SBTWs). This is done by exciting the structure with two different 
actuators operating at the same frequency but with a phase difference 
between them [9]. 

To generate orthogonal traveling waves using this method, we used 
two separate pairs of actuators. One pair will excite SBTWs in the 
crosswise direction (y-axis) and the other pair excites in the 
lengthwise (x-axis) direction, as shown in Figure 4.

Figure 4: Illustration of the plate with four piezoelectric actuators.

The plate is given dimensions 279.4×584.2×0.7937 mm (11×23 
×1/32 in) and it is modeled as 6061 aluminum with boundary 
conditions that are assumed to be perfectly fixed on all four sides. 
The piezoelectric wafers are assumed to be perfectly bonded to the 
surface of the plate and are modeled as monolithic piezoelectric 
actuators operating in the 3-1 mode [10]. The Finite element model 
discretizes the plate into a 19×35 quadratic finite element mesh (seen 
in Figure 5) using first order shear deformation theory to ensure that 
it captures the in-plane rotations that are critical to accurately model 
the high frequency behavior of thin plates. 

What are traveling waves?
When a continuous structure is excited at some frequency the 
structure will deform into a characteristic shape. When a structure is 
excited at one of its natural frequencies this deflection shape is 
referred to as a mode shape. These mode shapes are a standing wave 
in a structure. Standing waves will oscillate in and out-of-plane, but 
they will not propagate. Traveling waves are similar to standing 
waves, except that they propagate along the medium they are active 
in. This concept is easier to visualize in an image, so consider Figure 
1.

Figure 1: Example of standing and traveling waves.       

Ordered: blue, red, yellow, purple, green.

Traveling waves are present in nature and can be seen in the 
swimming behavior of some fish and rays [1]. The propagation of 
the traveling wave in the wings of a string ray can be seen in Figure 
2. An example of standing waves being active in a plate can be seen 
if Figure 3. The plate has two piezo actuators (the orange colored 
wafers) that excite the plate at certain frequencies, creating different 
2D standing wave patterns in the salt that is setting on the
surface of the plate.

Introduction

𝑦𝑇 𝑥, 𝑡 = 𝐴𝑠𝑖𝑛(𝑘 𝑥 − 𝑐𝑡 )

𝑦𝑆 𝑥, 𝑡 = 𝐴𝑠𝑖𝑛 𝑘𝑥 ∗ sin(𝑤𝑡)

Figure 2: Illustration of a 

sting ray swimming 

(Blevins [8]).

Figure 5: Finite element model of 

the plate.

After we have excited SBTWs in the 
plate, we need to address the quality 
of these traveling waves. For particle 
motion applications, assessing the 
quality of the SBTWs is important 
because the particles will not move in 
the direction of the SBTW if it is not 
active where the particles are. 

For this investigation, we want to look at two orthogonal SBTWs that 
are high quality when they are excited separately, and then we will 
examine how the combination of the two will affect the quality of the 
superimposed SBTWs. The quality of the SBTWs is evaluated using 
complex orthogonal decomposition (COD). COD can be used to 
decompose a complex displacement matrix into a complex correlation 
matrix 𝑹 , whose eigenvectors are the complex modes and  
eigenvalues are the root mean square amplitudes of the complex 
modes [11]. The complex correlation matrix derived to be 

𝑹 =
1

𝑁
𝒁ഥ𝒁𝑇

where 𝒁 is the matrix of complex motion in the plate where 𝑧𝑗 =
𝑧𝑗 𝑡1 , … , 𝑧𝑗 𝑡𝑁

𝑇
. Using these vectors, 𝑧𝑗, we can populate the 

𝑀 ×𝑁 complex displacement matrix 𝒁 = 𝒛1, … , 𝒛𝑀
𝑇. Let the first 

eigenvector of 𝑹 be 𝑽𝟏, then the traveling index is defined:

𝑇𝑖 =
1

𝑐𝑜𝑛𝑑([𝑟𝑒𝑎𝑙 𝑽𝟏 , 𝑖𝑚𝑎𝑔 𝑽𝟏 ])

A traveling index of 𝑇𝑖 ≈ 0 corresponds to a pure standing wave and 
𝑇𝑖 ≈ 1 corresponds to a pure traveling wave [10,11]. 

Investigation into Coinciding Orthogonal SBTWs
First, we solved the Finite Element model’s equation of motion to 
find its frequency response function (FRF) of the plate from 0-1000 
Hz for both the x-axis and y-axis MFCs.
Note, that not all of the peaks between the x and y axis FRF plots 
overlap. This is because the different actuator locations are able to 
activate some natural frequencies that others cannot.

Figure 8: Contributing mode shapes 

and the normalized RMS velocity of 

the plate for the x-axis configuration.

Figure 9: Contributing mode shapes 

and the normalized RMS velocity of 

the plate for the y-axis configuration.

Figure 6: Average FRF response of the plate across a 0-1000 Hz 

range.

+ +

(a)                         (b)                       (c)       
Figure 3: Mode shapes shown in lines of salt on a 

real plate. (a) 253.03 Hz, (b) 315.39 Hz (c) 619.45 

Hz

Figure 10: Normalized RMS velocity of the plate for the superimposed 

signal. 𝑇𝑖 ≈ 0.96.

Each of the peaks in the FRF correspond to a 2D mode shape that 
can be excited in the plate. The first twenty-four mode shapes for 
this plate can be seen in Figure 8. Blue corresponds to the negative 
deflection and red to the positive deflection. With green being the 
median value. For all modes except 14 and 15 green represents 
nodal lines where there is zero deflection.

What can we do with 

traveling waves?

Table 1: Actuation configurations excited in the plate.

Figure 8: First 24 mode shapes of the plate.

Because of the actuator locations, there are specific modes that 
cannot be excited in the plate with the chosen set of actuators. For 
example, the x-axis actuators are unable to excite mode 21. This 
allows for modes 20 and 22 to be combined to form the x-
propagating SBTW. This is also the case with the y- propagating 
SBTW, since the actuators cannot excite modes 9 or 10, allowing 
the combination of modes 8 and 11. To superimpose the SBTWs, 
we follow the methods of previous work that has confirmed the 
superposition of voltage excitation to the piezo actuators will 
generate SBTWs with superimposed displacement fields of the 
plate from the individual frequencies [12]. 

Traveling waves have been used to drive 
propulsion in fluids [2,3], drag reduction 
[4], solid-state motion [5], and particle 
motion applications [6,7]. In the case of 
particle motion, 2D orthogonal traveling 
waves are of interest since they have 
potential as a method of controlled 
particle motion in 2D on the surface of the 
plate. We want to investigate the 
superposition of coinciding orthogonal 
traveling waves to see if the separate 2D

waves combine into waves that can be tailored to propagate in any 
prescribed direction or if there will only be destructive interference 
between the two traveling waves.

Mode 20 Mode 22 Mode 8 Mode 11

A Finite Element model of a 2D plate was developed with two pairs of 
piezoelectric actuators bonded to its surface. This plate was excited to generate 
2D SBTWs using two-mode excitation. This investigation has shown that 
orthogonal SBTWs can coincide and be tailored to generate SBTWs that 
maintain their high quality traveling indices. There are still questions to ask 
about the 2D SBTWs beyond COD. COD guarantees us that the superimposed 
SBTWs will propagate, but COD is not sensitive to the direction of 
propagation. Future work will need to scrutinize the quality of the SBTWs 
traveling in a given direction on the plate. Application of such a quality metric 
will be the next step in tailoring orthogonal SBTWs to be superimposed with 
the intention of generating a high quality SBTW in any direction across the 
surface of the plate. 

These frequencies were selected for this investigation because the mode 
shapes contributing to each orthogonal SBTW are different and far apart, so 
that the interference between the resulting SBTWs will be minimized. 
Figures 8 and 9 show the RMS velocity across the entire plate with the 
individual sets of actuators excited at the frequencies prescribed in Table 1.  
Figure 10 shows the RMS plot of the superimposed excitations. From the 
RMS plot alone, it is not clear which direction propagation the SBTWs are 
traveling in. Applying COD to the combined case we get 𝑇𝑖 ≈ 0.96. This 
confirms that these signals can combine constructively to produced an 
SBTW that does still propagate across the plate. A MATLAB code was 
written to animate the propagation of the SBTW, but observing the motion it 
still was not clear if the SBTW was propagating primarily in a diagonal 
direction. Therefore, we can conclude that the SBTW is propagating but not 
how much it is propagating in a given direction.
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SBTW Excitation Cases
Freq. (Hz) Phase (deg) Ti Modes

X-axis 470 110 0.94 20 + 22
Y-axis 221 67 0.96 8 +12


