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Results and Further Work
Conversion of the code to C++ from Python on 
its own resulted in the largest gains. If a 
speedup factor of ~2.2 is assumed from the 
cached variable method as we saw in Python, 
the conversion to C++ on its own netted us at 
least ~40x increase in speed when using array 
objects to represent physical vectors. 
Converting array objects to something more 
native to the C++ language like basic arrays or 
structs netted an additional ~2x speed 
increase, with structs having slightly better 
improvement over basic arrays in our 
simulation. Our implementation of atomic 
boolean variables with multithreading 
unfortunately resulted in ~2x degradation in 
speedup. Another obstacle for later 
consideration is ensuring resources are still 
properly allocated for multithreading in 
combination with brute force parallel 
processing, which is how these simulations are 
typically run in production using separate 
individual instances of a neutron. Our final 
sequential and parallel code versions had 
speedup factors of 168.6 and 91.5, 
respectively.

Introduction
Polarized neutrons, or neutrons that are in a 
single spin state, are vital to many low-energy 
fundamental physics experiments, such as the 
UCNτ experiment, which is designed to 
measure the average lifetime τn of a free 
neutron which undergoes β-decay within a 
magnetic field. The combination of τn with the 
average lifetime of neutrons that leave the 
trap by other means (τnon-β) forms the total 
trap lifetime (τtrap). τnon-β constitutes a set of 
systematic effects for the experiment. One of 
the factors that contributes to τnon-β is the 
average neutron depolarization lifetime 
(τdepol), which is what the simulation that we 
worked on optimizing is designed to calculate. 

Figure 1: Relationship between the average lifetime of a free 
neutron (τn), the average lifetime of all UCNs in the trap (τtrap), and 
the average lifetime of neutrons that leave the trap through non-
β-decay processes (τnon-β). The average neutron depolarization 
lifetime (τdepol) is a part of τnon-β and is the primary relationship with 
which our simulation is concerned.
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Eqn (1)

The Solution (cont.)
alongside or intermittently during a simulation’s 
run.

To accomplish this, parallel programming was 
implemented via multithreading, with data 
recording occurring on a separate thread 
simultaneously along with a thread running a 
simulation. Our implementation worked 
successfully, but resulted in degraded 
performance, as highlighted in the flowchart in 
Figure 3. The likely reason for the degraded 
performance was the use of atomic boolean 
variables (a “busy-wait” approach to prevent 
race conditions between both threads) was 
inefficient. The use of something more efficient 
like mutexes might prove to be more efficient.

The Problem

Figure 2: Time stamp output from 100 neutrons in our simulation 
using the original code. The total run time comes out to: 36 hr, 31 
min, 6.2 sec.

While simulations will never replace real world 
experiments, they are helpful in understanding 
the real world equivalents. However, one 
drawback of using them is that they can be 
significantly slower compared to running the 
experiment in real life (i.e. the “simulation 
clock” runs slower than the wall clock). Figure 2 
displays the total run time of 100 neutrons 
during one instance of our initially Python-based 
spin dynamics code on our development 
computer.

The Solution

After testing some optimization methods in 
Python and Cython during previous work, we 
determined that the best results would come 
from completely converting the current code 
from Python to C++. Some optimization was 
also done preemptively in order to reduce the 
number of calculations being performed using a 
method we refer to as “cache variables”, which 
was discovered to give ~2x speedup in Python. 
For 7 weeks, an extensive process of converting 
and debugging was conducted, resulting in code 
that was ~88x faster than the original Python 
version. Figure 3 shows a flowchart of all the 
different versions of the spin dynamics code 
that resulted throughout the entirety of the 
optimization process as reference. The relative 
speedup factors were calculated using Eqn (2) 
from Figure 4.

This first C++ version following the 
conversion process made heavy use of array 
objects of the form “array<data type>" from 
the C++11 <array> library to represent 
physical vectors. Through some small-scale 
tests, we discovered that data structures built 
into the  C++ language (e.g. basic arrays and 
structs) would likely be faster than array objects 
or any other data structure built on top of such 
C++ builtin functionalities. Highlighted in Figure 
3 is the first C++ simulation code and its 
subsequent iterations of optimizations described 
above.
 Once we had determined an optimal 
representation of physical vectors, our next 
focus was on how our data was being recorded, 
which had all been done via writing to text files 
after a simulation had finished execution.  
Realistically, data needs to be recorded either

A much larger (and more realistic) batch size 
such as one million neutrons would take over 40 
years to complete at that rate. Because of this, 
optimization of the simulation code was 
required for better time efficiency.

Figure 3: Flowchart depicting the branches of development of our 
current UCN spin dynamics code. The weight of each link is the 
speedup factor gained from the previous iteration, which is derived 
using Eqn (2) in Figure 4. Outlined are the first three variants from the 
original Python script, the first C++ code and its further optimized 
derivatives, and the best performing C++ sequential code and its 
multithreading derivative. 
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Figure 4: Formula for calculating the speedup factors in the flowchart 
in Figure 3. In the flowchart’s case, the “original” version is the version 
that came immediately before the “current” version.

avg timeinitial ( s
sim s )
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=Speedup factor Eqn (2)

Sources: C/C++ Standard (https://en.cppreference.com/w/)
LLNL (Lawrence Livermore National Lab, https://computing.llnl.gov/tutorials/)
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