
Further Optimization of an Ultracold Neutron Spin Dynamics Simulation Code

Chris Swindell, Adam Holley

Tennessee Technological University

This work was supported by the National Science Foundation, grant PHY-1553861

Results and Further Work
Conversion of the code to C++ from Python on
its own resulted in the largest gains. If a
speedup factor of ~2.2 is assumed from the
cached variable method as we saw in Python,
the conversion to C++ on its own netted us at
least ~40x increase in speed when using array
objects to represent physical vectors.
Converting array objects to something more
native to the C++ language like basic arrays or
structs netted an additional ~2x speed
increase, with structs having slightly better
improvement over basic arrays in our
simulation. Our implementation of atomic
boolean variables with multithreading
unfortunately resulted in ~2x degradation in
speedup. Another obstacle for later
consideration is ensuring resources are still
properly allocated for multithreading in
combination with brute force parallel
processing, which is how these simulations are
typically run in production using separate
individual instances of a neutron. Our final
sequential and parallel code versions had
speedup factors of 168.6 and 91.5,
respectively.

Introduction
Polarized neutrons, or neutrons that are in a
single spin state, are vital to many low-energy
fundamental physics experiments, such as the
UCNτ experiment, which is designed to
measure the average lifetime τn of a free
neutron which undergoes β-decay within a
magnetic field. The combination of τn with the
average lifetime of neutrons that leave the
trap by other means (τnon-β) forms the total
trap lifetime (τtrap). τnon-β constitutes a set of
systematic effects for the experiment. One of
the factors that contributes to τnon-β is the
average neutron depolarization lifetime
(τdepol), which is what the simulation that we
worked on optimizing is designed to calculate.

Figure 1: Relationship between the average lifetime of a free
neutron (τn), the average lifetime of all UCNs in the trap (τtrap), and
the average lifetime of neutrons that leave the trap through non-
β-decay processes (τnon-β). The average neutron depolarization
lifetime (τdepol) is a part of τnon-β and is the primary relationship with
which our simulation is concerned.

1
𝜏 𝑡𝑟𝑎𝑝

=
1
𝜏𝑛

+
1

𝜏𝑛𝑜𝑛−𝛽 1
𝜏 𝑑𝑒𝑝𝑜𝑙

+…

Eqn (1)

The Solution (cont.)
alongside or intermittently during a simulation’s
run.

To accomplish this, parallel programming was
implemented via multithreading, with data
recording occurring on a separate thread
simultaneously along with a thread running a
simulation. Our implementation worked
successfully, but resulted in degraded
performance, as highlighted in the flowchart in
Figure 3. The likely reason for the degraded
performance was the use of atomic boolean
variables (a “busy-wait” approach to prevent
race conditions between both threads) was
inefficient. The use of something more efficient
like mutexes might prove to be more efficient.

The Problem

Figure 2: Time stamp output from 100 neutrons in our simulation
using the original code. The total run time comes out to: 36 hr, 31
min, 6.2 sec.

While simulations will never replace real world
experiments, they are helpful in understanding
the real world equivalents. However, one
drawback of using them is that they can be
significantly slower compared to running the
experiment in real life (i.e. the “simulation
clock” runs slower than the wall clock). Figure 2
displays the total run time of 100 neutrons
during one instance of our initially Python-based
spin dynamics code on our development
computer.

The Solution

After testing some optimization methods in
Python and Cython during previous work, we
determined that the best results would come
from completely converting the current code
from Python to C++. Some optimization was
also done preemptively in order to reduce the
number of calculations being performed using a
method we refer to as “cache variables”, which
was discovered to give ~2x speedup in Python.
For 7 weeks, an extensive process of converting
and debugging was conducted, resulting in code
that was ~88x faster than the original Python
version. Figure 3 shows a flowchart of all the
different versions of the spin dynamics code
that resulted throughout the entirety of the
optimization process as reference. The relative
speedup factors were calculated using Eqn (2)
from Figure 4.

This first C++ version following the
conversion process made heavy use of array
objects of the form “array<data type>" from
the C++11 <array> library to represent
physical vectors. Through some small-scale
tests, we discovered that data structures built
into the C++ language (e.g. basic arrays and
structs) would likely be faster than array objects
or any other data structure built on top of such
C++ builtin functionalities. Highlighted in Figure
3 is the first C++ simulation code and its
subsequent iterations of optimizations described
above.
 Once we had determined an optimal
representation of physical vectors, our next
focus was on how our data was being recorded,
which had all been done via writing to text files
after a simulation had finished execution.
Realistically, data needs to be recorded either

A much larger (and more realistic) batch size
such as one million neutrons would take over 40
years to complete at that rate. Because of this,
optimization of the simulation code was
required for better time efficiency.

Figure 3: Flowchart depicting the branches of development of our
current UCN spin dynamics code. The weight of each link is the
speedup factor gained from the previous iteration, which is derived
using Eqn (2) in Figure 4. Outlined are the first three variants from the
original Python script, the first C++ code and its further optimized
derivatives, and the best performing C++ sequential code and its
multithreading derivative.

Python
Optimized

Python

Cython

C++
(array obj)

C++
(arrays)

C++
(structs)

C++ (multi-
threading)

2.41x

2.68x

88.51x

1.79x

1.90x 0.54x

Figure 4: Formula for calculating the speedup factors in the flowchart
in Figure 3. In the flowchart’s case, the “original” version is the version
that came immediately before the “current” version.

avg timeinitial (s
sim s)

avg timefinal(s
sim s)

=Speedup factor Eqn (2)

Sources: C/C++ Standard (https://en.cppreference.com/w/)
LLNL (Lawrence Livermore National Lab, https://computing.llnl.gov/tutorials/)

	Slide 1

