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Motivation and Introduction
Cancer is a global cause of fatalities-many treatments are underway.  
Main Focus-Electrical Tumor Treating Fields

• electric pulses through cells
• lethal when cell is dividing

Advantages:
• Minimal side-effects
• Evidence of effectiveness
• Targets tumor 

Motivation-to gain understanding how electrical field is 
distributed in cancer cells in various phases of mitosis

Research Objectives
-Use COMSOL Multiphysics software to model electric field 
distribution of a cancer cell at stages of cell separation 
(mitosis) when applying pulsed electric potential at certain 
time duration

Mitosis

Governing Equations/Boundary Conditions

𝐸𝐸 = −𝛻𝛻𝑉𝑉

Parameters and Specifications

Conductivity of Cytoplasm 
[S/m] 0.482

Relative Permittivity of 
Cytoplasm 60.02

Model 3D

Physics: Electrostatics/Heat Transfer in 
Solids

Study: Frequency-Transient
Mesh: Coarse

Electric Potential/Time Duration 60V/60ns1

Discussion

Future Work
• Troubleshoot mesh and computation
• Obtain visual plots of how dielectric properties are 

affected by electric field
• Test various sizes and placement of electrodes around cell 

at different stages of mitosis
• Model cell in Anaphase, Cytokinesis, and Prophase

Acknowledgements and References

Model Cell Radius [um] 22.5

Density [kg/m^3] 993.25

Heat Capacity [J/kg*K] 4178

Thermal Conductivity 
[W/m*K] 0.6044

http://fhs-bio-wiki.pbworks.com/w/page/12145788/Mitosis

Figure 1 (left): Process of 
mitosis

Built Model of Metaphase in COMSOL

One cell divides into 2 
daughter cells

Stages:
1. Interphase
2. Prophase
3. Metaphase
4. Anaphase
5. Telophase/Cytokinesis

Fig. 2: Complete drawing 
with cell membrane and 
organelles

Fig. 3a: Mitochondria 
Representation: Inner 
Compartment, Inner 
Membrane, Outer Membrane

Fig. 3b: Chromosomes, 
Kinetochores, and 
Microtubules

Fig. 3c: Endoplasmic 
Reticulum3

∆𝐽𝐽 = 𝑄𝑄𝐽𝐽
𝐽𝐽 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗𝜀𝜀0𝜀𝜀𝑟𝑟 𝐸𝐸 + 𝐽𝐽𝑒𝑒

Frequency-Transient Study:

𝜌𝜌𝐶𝐶𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝐶𝐶𝑝𝑝𝑢𝑢 � 𝛻𝛻𝜕𝜕 = 𝛻𝛻 � k𝛻𝛻𝜕𝜕 + 𝑄𝑄 + 𝑄𝑄𝑡𝑡𝑒𝑒𝑡𝑡

Heat Transfer in Solids Module:

Thermal Insulation Parameter:
−𝑛𝑛 � 𝑞𝑞 = 0

Electromagnetic Heat Source:
𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝜌𝜌𝐶𝐶𝑝𝑝𝑢𝑢 � 𝛻𝛻𝜕𝜕=𝛻𝛻 � k𝛻𝛻𝜕𝜕 + 𝑄𝑄𝑒𝑒
𝑄𝑄𝑒𝑒 = 𝑄𝑄𝑟𝑟𝑟 + 𝑄𝑄𝑚𝑚𝑚𝑚

𝑄𝑄𝑟𝑟𝑟 =
1
2
𝑅𝑅𝑅𝑅(𝐽𝐽 � 𝐸𝐸∗)

𝑄𝑄𝑚𝑚𝑚𝑚 =
1
2
𝑅𝑅𝑅𝑅(𝑖𝑖𝑗𝑗𝜔𝜔 � 𝐻𝐻∗)

Boundary Electromagnetic Heat Source:
−𝑛𝑛 � −𝑘𝑘𝛻𝛻𝜕𝜕 = 𝑄𝑄𝑏𝑏

Mesh for Computation
Complex due to large and tiny domains with intricate element 
sizes around edges and faces

Figure 4 (above): Intricate mesh around mitochondria (left) 
and chromosome (right)

Figure 5 (above): Coarse mesh over whole model with 
copper electrodes

• Complications with obtaining and understanding solution
• Difficulty with material properties being accounted for in 

model 
• Electric Potential at 60V; Ground at 0V shown briefly 

during time duration with color scale. 
• Hoped to obtain plot with electric field distributions at 

various times
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Resistive Heat Loss =

Magnetic Losses =

Non-viscous heating source =
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