
2. BACKGROUND

A well-known conservative reversible logic (CRL) gate is the
Fredkin gate [2]. The Fredkin gate (FG) is a “controlled-swap”
whereby one signal determines whether two other signals are
passed “straight-through” or “swapped”. The FG is often used
as an operator in many quantum computing algorithms.

CRL gates are not limited to the size of the FG. CRL gates can
have many more than just three inputs and three outputs. With
more inputs and outputs, CRL gates get increasingly complex.
The FG, with only three inputs, is limited to permutations on
the two signals that are passed “straight-through” or
“swapped”. With more inputs, the number of permutations on
those inputs increases, leading to more gates and more
complex behavior.

Many FG designs of traditional digital logic operations have
been proposed, but for larger CRL gates, no systematic study of
implementations of traditional digital logic operations has been
undertaken.
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1. INTRODUCTION 4. METHODOLOGY

Energy consumption and heat are crucial limiting factors in
modern digital systems. Landauer [1] showed that any
irreversible logic gate dissipates kT ln 2 Joules of energy with
each irreversible bit . Therefore, reversible logic is required for
ultimate energy efficiency in computational systems.
Conservative logic gates [2] – a gate whose Hamming weights
for inputs and outputs are equal – are theoretically energy
neutral in that output signal energy can be derived from input
signal energy.

3. OBJECTIVES

• Determine if existing FG implementations of traditional digital
logical operations are unique

• Find new CRL gate implementations of traditional logical
operations, if they exist

• Find CRL gate designs that are able to implement more than
just one traditional logical operation

To find CRL gate implementations of traditional logical
operations, circuits were simulated and circuit
outputs were recorded for different combinations of
gate inputs and gate connections.

With a specified number of variables, gate size, and
stage depth, combinations on the different placement
of variables and different gate connections were
generated. At least one function input is required to
impinge on the first gate [4]. Additional inputs can be
applied at any other location in the circuit.

CRL gates can be implemented with either an active-
high or an active-low control signal [4]. This study
considers both CRL gate implementations.

As new stages are added to the circuit, its inputs are
taken from combinations on constants, unused
function inputs, and unused gate outputs from
previous stages.

In this study, combinations of variables, constants,
gates, and wirings between gates were built to a
specified depth of gates. The search continued in
depth until specified digital functions were found. The
“garbage” outputs were inspected for useful digital
functions in addition to and separate from the
originally specified function.

5. RESULTS AND DISCUSSION

All two-input logical functions can be implemented in
one or two FGs. Four two-input logic functions require
two FGs with the balance capable of being formed with
a single FG. This study found that the previously
published FG forms for primitive logical operation
AND2 and OR2 to be optimal.

For the two-input logical functions F2 and F4, one
unique FG design was discovered. These functions
show up in conjunction with AND2, and shown in Fig. 2.

Table 1: Number of distinct FG implementations of the two-
input logical operations. Trivial and 1-input functions F0 (null),
F15 (identity), F3 (A), F5 (B), F10 (NOT B) and F12 (NOT A) are
not considered.
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6. CONCLUSIONS

Table 3: Number of distinct FG implementations of
the common three-input operations.

The search of all possible FG implementations for all two-
input logical functions revealed that all these functions
could be implemented in two or fewer gates. Table 1 shows
the number of unique FG designs for the non-trivial two-
input logical operations. The results of the same search on
CRL gates of size four are shown in Table 2.
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Fig. 2: FG circuits: AND2 with F2 (L) and AND2 with F4 (R)
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Fig. 3: FG circuits: OR2 with F11 (L), and OR2 with F13 (R)

For two-input logical functions F11 and F13, one
unique FG design was discovered. Functions F11 and
F13 are created simultaneously with OR2, and shown in
Fig. 3.

Previous research, including [2] and [3], have proposed FG
implementations of common digital logic operators. Later,
additional FG designs for logical primitives were proposed and
used in the design of more complex logical operations [3].
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Fig. 1: Fredkin gate (L) and its two operational states

Fig. 6: FG circuit: AND3 (F1), NAND3 (F254), and AND2

A•B•C

1 A•B•C

A•B

A•B

C C

F
A

B

0

A

F
0

F

Function Fn Number Min. 
Gates

Function Fn Number Min. 
Gates

AND2 F1 2 1 XNOR2 F9 1 2

NAND2 F14 5 2 Implication F11 1 1

OR2 F7 2 1 F13 1 1

NOR2 F8 5 2 Inhibition F2 1 1

XOR2 F6 1 2 F4 1 1

Table 2: Number of distinct size 4 CRL gate implementations of
the two-input logical operations. Trivial and 1-input functions
F0 (null), F15 (identity), F3 (A), F5 (B), F10 (NOT B) and F12
(NOT A) are not considered.

Function Fn Number Min. 
Gates

Function Fn Number Min. 
Gates

AND2 F1 6 1 XNOR2 F9 30 2

NAND2 F14 45 2 Implication F11 3 1

OR2 F7 6 1 F13 3 1

NOR2 F8 45 2 Inhibition F2 3 1

XOR2 F6 30 2 F4 3 1

Function Fn Number Min. 
Gates

Function Fn Number Min. 
Gates

AND3 F1 12 2 MAJ3 F23 30 3

NAND3 F254 69 3 FA_CARRY3 F23 30 3

OR3 F127 12 2 FA_SUM3 F105 1 3

NOR3 F128 69 3 OAI21 F234 27 3

XOR3 F105 1 3 AOI21 F168 27 3

XNOR3 F150 1 3 FA_ PROP3 F60 1 3

On the search of three input functions with CRL
gates of size four, it was discovered the F23 and F60
can be implemented in just two gates.

The work describes the systematic study of CRL gate
implementations of two-input and three-input logical
operators. All possible FG circuit designs with one
through three FGs were derived, and all possible CRL
gate size 4 circuit designs with two gates were
derived.

The study has identified optimal designs for all two-
input functions and many useful three-input
functions with CRL gates of size 3 and 4. The study
also identified circuit designs which implemented
more than just one of the commonly used logical
operators.
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Fig. 5: CRL gate size 4 circuit: AND2 (F1) and OR2 (F7)
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Fig. 7: CRL gate size 4 circuit: MAJ3 (F23) implemented in 
two stages and AND3 (F1)
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Fig. 4: Many of the possible FG NAND2 implementations. The two not
shown here are the same as the first and last, but with A and B’s
placement swapped. The difference in output is F11 instead of F13
and F2 instead of F4.
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Fig. 5: The two operational states of G3, one of the CRL gates of size 4.
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