
Student Researchers: Phoebe Dawson and Steffano Oyanader
Faculty Mentors: Dr. Pedro E. Arce and Dr. J. Robby Sanders

Department of Chemical Engineering; Tennessee Technological University, Cookeville, TN

Motivation and Relevance of Research

Methodology

Discussion

Understanding the formulation and the modeling of distinct approaches used
in the bio-mathematical foundation to homeostatic wound healing modeling is
a critical task to advance the field. In recent contributions (Jorgensen, 2017),
researchers have made progress experimentally in understanding transport of
biomedicines in hydrogels of potential use as an effective scaffolding material
to facilitate wound healing. This effort has been complemented by modelling
approaches (Dawson et. al., 2021)1 to increase the understanding of the electro-
convective diffuse transport of biomolecules in wound healing in
electrotherapeutic assisted wound healing applications. In the past, the guiding
method of study has been focused on capillaries of cylindrical geometry. This
contribution is focused on not only on the area-averaging methodology
(Whitaker, 1999) for modeling of the electrostatic potential effects in the wound
microenvironment of the scaffolding material, but also on the role that the
chosen geometry plays on the electrostatic potential behavior. Therefore, in this
study, we are making a comparison of the effects of the electrostatic potential
on the microenvironment in two distinct geometries, i.e., cylindrical geometry
and the rectangular geometry. Specifically, the impact of the diffusion and the
migration of thrombin to induce the conversion of fibrinogen to fibrin will be
discussed. Anchored by the Renaissance Foundry Model to guide the overall
research, elements of the Electrokinetic-Hydrodynamics will be used to
formulate the microscopic scale models that, then, by following an area-
averaging algorithm approach will be upscaled to the entire capillary domain.
The solutions will be compared analytically and graphically through a set of
parametric values corresponding to the voltages applied to the system. Future
and ongoing efforts towards this project will be highlighted.
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In conclusion, one can visually compare the solutions provided from the algorithmic
approach to solving the Laplace Electrostatic Equation in two separate coordinate systems.
A clear and desirable outcome is that not only is there no numerical or visual difference
when plotting each of the analytical solutions, but on each of the graphs one can observe a
region of the non-dimensional length which behaves as a pseudo-steady state. This is an
important scaling effect that will allow for a simplified solution of the Concentration
Profile. The Concentration (𝐶𝐴) will be studied in the future with the effects of the applied
electrical field in cartesian and cylindrical coordinates.
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Conclusions and Future Work

The methodology for modeling the wound microenvironment shown 
is based on the Renaissance Foundry (see figure above) [3] and the 
area averaging approach [5]. A thorough review of each of these 
works help to describe the methodology to solve the transport  
governing equations used to model the wound microenvironment. In 
addition, the Electrokinetic-Hydrodynamics H-model [1] will be used 
to direct the dynamic model. 

Conservation of Electrostatic Charge Cartesian Coordinates
Assumptions Electrostatic Conservation Equation-RC
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Boundary Conditions 𝜙𝑂 𝑧 = 𝐾01 @ 𝑧 = 0 𝜙1 𝑧 = 𝐾1 @ 𝑧 = 𝐿
𝜙02 𝑦 = 𝐾𝑂2 @ 𝑧 = 0 𝜙2 𝑦 = 𝐾2 @ 𝑦 = 𝐵

Formal Cylindrical Analytical Solution:
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Conservation of Electrostatic Charge Cylindrical Coordinates
Assumptions Electrostatic Conservation Equation-CC

- Laplacian Formation 
- No Radial Effects of the 

Electrical Field 
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Boundary Conditions
𝜕𝜙

𝜕𝑟
= 0@ 𝑟 = 0 𝜙 𝑧 = 𝐾3 @ 𝑟 = 𝑅0

𝜙 𝑟 = 𝐾1 @ 𝑧 = 0 𝜙 𝑟 = 𝐾2 @ 𝑧 = 𝐿

Species Continuity Equation in Cylindrical Coordinates:
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Formal Average Cylindrical Analytical Solution:
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Substitute Deviation Variable into Area-Average 
Expression to Determine the Area-Average of the 

Governing Equation

Apply Area-Average 
Formula to Governing 

Equation

Subtract Area-Average Expression from Substituted 
Governing Equation

Apply Simplifying Assumptions According to Geometry 
of System

Derive Deviation Equation and Substitute Deviation 
Variables to Boundary Conditions

Determine Closure Equation for Proposed Solution and 
Solve for Deviation Variable

Determine the Governing Equation and Describe 
Boundary Conditions

Substitute Deviation 
Variables into Governing 

Equation

Solve the Area-Average Governing Equation According 
to the Boundary Conditions
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Cylindrical Coordinates

Formal Cylindrical Analytical Solution:

𝝓 = 𝝓 + ෩𝝓


