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Introduction
Microscopic equations describing transport
processes (e.g., diffusion, momentum, conduction,
& electrostatics) exist in multidimensional domains
and they display different levels of complexities
depending on the geometry for which they are
applied. For example, the 3D electrostatic potential
equation have been applied to several geometries in
hydrogel structures to describe the effect of the
electrostatic field on the transport of
macromolecules found in electrophoresis and
electro-osmosis.

Research has shown the role of diverging channels,
compared to regular channels, when used in the
electrophoretic separation of macromolecules such
as DNA fragments & proteins (Pascal, Medidhi et al.
2019). In general, and potentially, parallel channels
in nanocomposite gels offer a better separation than
diverging channels (Simhadri et al, Gohosal et al).
Further research is needed to understand the
reason behind this result. This poster focuses on
Laplace type equations, namely: 2D electrostatic
potential equation, as applied to a diverging
rectangular domain to present upscaled solutions.

Model Formulation
A typical diverging pore (found in nanocomposite
gels) is sketched in Figure 1. This is a
representation of a diverging pore associated with
the morphology of hydrogels with nanoparticle
fillers. These pores are of varying sizes and thus
when considering a predictive model to analyze
these systems, scaling is a necessary step in
achieving a useful result for the design of the pore.

In this poster, using area averaging technique, we
were able to scale up the microscopic equation to
the entire pore to describe transport along the axial
variable.

General Observations about the Formulation
A-Assumptions
The conservation equation is based on the conservation of
charges (i.e., the Coulomb Equation) under steady-state
conditions. Further the two key dimensions of interest are the
perpendicular coordinate (“y”) to the axial coordinate (“x”) as
the depth of the pore is assumed symmetrical (see Figure 1).
Thus, the model become the Laplace equation in 2D. See
Equation (1) with BC indicated in Figure 1.

B-General Strategy to Up-Scale the Laplace Equation
The general strategy used for upscaling the electrostatic
potential is presented in figure 2. A step by step
implementation of this algorithm was used to upscale
equation (1).

Conclusion
The results from the analysis points to electrostatic potential being constant in about 60% region of the domain. This 
result is significant because it will allow us to be able to further simplify our analysis of the species mass analysis of the 
system.  
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The Electrostatic problem and Solution 
Approach
The microscopic electrostatic model equation of the 
Laplace type in a 2D space is given by equation (1)

Step 1: 𝜕𝜕2𝜙𝜙
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Using the definition of area averaging (Equation 2), the 
equations is scaled up(Equation 3).
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Following the systematic algorithm (see Figure 2)  of 
area averaging, the general ‘decomposition”  for 
equation is:

Step 4: 𝜙𝜙 = 𝜙𝜙 + �𝜙𝜙 (4)

Where 𝜙𝜙 is the average electrostatic potential along 
the channel (a function of x) and �𝜙𝜙 is the deviation of 
electrostatic potential (function x and y). Now a “closure 
approach” is needed. Using the Payne et al. approach 
and with the following B.C.

𝑥𝑥 = 0,𝜙𝜙 = 𝑘𝑘1; 𝑥𝑥 = 𝐿𝐿,𝜙𝜙 = 𝑘𝑘3 (5)

Solving the equation (1), using the definition in equation 

(3) we obtain: 
1. The deviation part of the potential is computed using 

the boundary condition:

𝑦𝑦 = 0, �𝜙𝜙 = 0; 𝑦𝑦 = ℎ(𝑥𝑥), �𝜙𝜙 = 𝑘𝑘2 (6)

Step 8: �𝜙𝜙 = 3 𝑦𝑦
ℎ 𝑥𝑥

− 1 𝑘𝑘2− 𝜙𝜙
2

(7)

To solve the deviation term completely, a solution to the
average electrostatic potential needs to be obtained.

2. The average electrostatic potential is derived by 
substituting equation (7) into equation (3), while noting:

𝜕𝜕�𝜙𝜙
𝜕𝜕𝑦𝑦

= 𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

(7)

The resulting function is the differentiated with respect to y 
from 0 to h(x). The resulting function, as a function of the 
length, of the channel is given by:

Step 10: 𝜙𝜙 = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑥𝑥 3
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(8)

Where; 𝐴𝐴 = 𝑘𝑘1 − 𝑘𝑘2, 𝐵𝐵 =
𝑘𝑘3−𝑘𝑘2 − 𝑘𝑘1−𝑘𝑘2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝐿𝐿 3

ℎ 𝑥𝑥

𝑐𝑐𝑠𝑠𝑠𝑠ℎ 𝐿𝐿 3
ℎ 𝑥𝑥

(9)

Results and Discussion
The graphical solution to the electrostatic potential
problem is presented below. K2 is potential applied in the
negative orthogonal direction (negative y direction). The
plot presented represents the summation of the deviation
term and the average term. See Equation (4)

The combined effect of the deviation term and the
average term is presented in Figure 3. The illustration
shows that there exists some variation in the at the
entrance and at the exit of the domain. This entrance
effect is observed, from both ends, to be approximated to
about 60% of the whole domain. The region in which the
solution electrostatic potential is constant with respect to
x-axis, is significant for upscaling purposes of the species
continuity equation.

Fig 3: Electrostatic potential distribution in a diverging 
rectangular domain with varying K2.

Fig 1: Geometry of channel analyzed: Diverging 
rectangle 

4. Re-write governing 
equation in terms of average 
and deviation

3. Apply Area-Average formula 
to Governing equation

5. Subtract final expression of the averaged governing equation 
from the re-written governing equation (i.e., step (3) – step (4))

6. Apply simplifying assumptions to equation from step (5) and 
effectively reduce the terms in the equation

7. Derive deviation equation and substitute deviation variables 
to Boundary conditions

1. Determine the governing equations
2. Describe boundary conditions

8. Determine closure equation for the proposed solution and 
solve the deviation variable

9. Substitute the deviation variable into the area average 
expression to determine the area average of the governing 
equation

10. Solve the area average governing equation according to the 
boundary conditions

Fig 2: Algorithm for implementing area averaging 
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