

# We successfully detected a deauthentication attack on a smart farm architecture using MERLIN, a distance-based anomaly detection algorithm.

TECH

Tennessee Technological University

## Detecting Denial-of-Service Attacks using Distance-Based Anomaly Detection

Sina Sontowski, ssontowsk42@tntech.edu Advisors: Maanak Gupta, William Eberle

#### Introduction

- Cyberattacks are increasing and becoming a threat to our infrastructure, including to the field of smart farming which is predicted as the future of agriculture
- A Denial-of-Service (DoS) attack can prevent crop sensor updates to be sent to the farmer, which is important during harvest
- Detecting cyberattacks, such as with anomaly detection, can prevent further damages
- How can we detect a deauthentication attack (type of DoS attack) on a smart farm infrastructure?
- Testbed depicted below is based upon Microsoft Farmbeats [1]

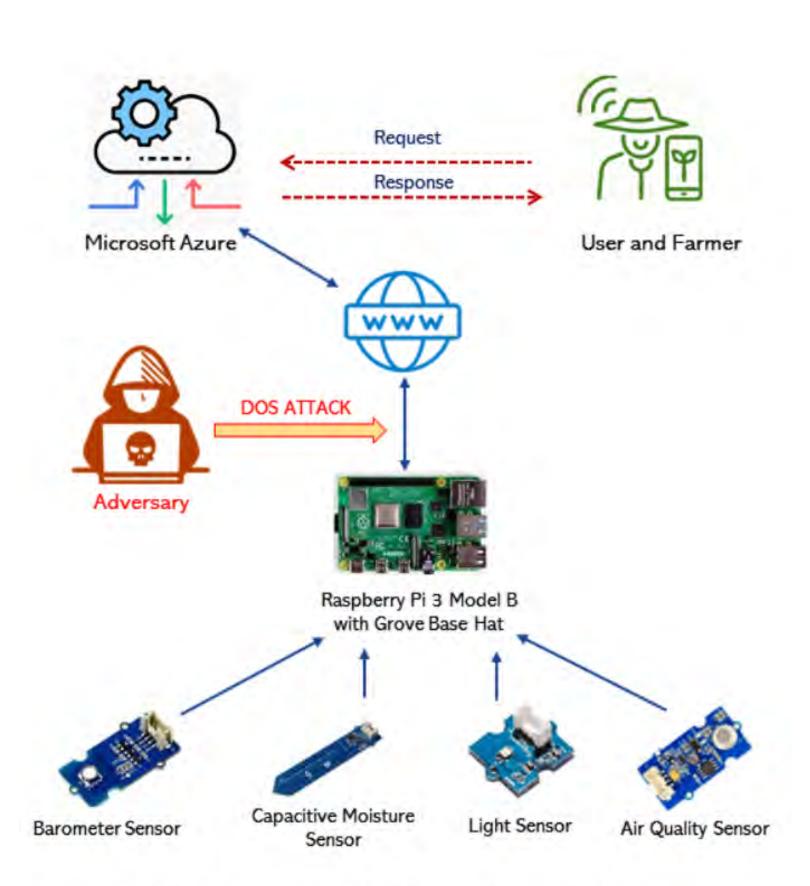



Fig. 3. System Architecture and Attack Surface.

#### Feature Extraction & Data Prep

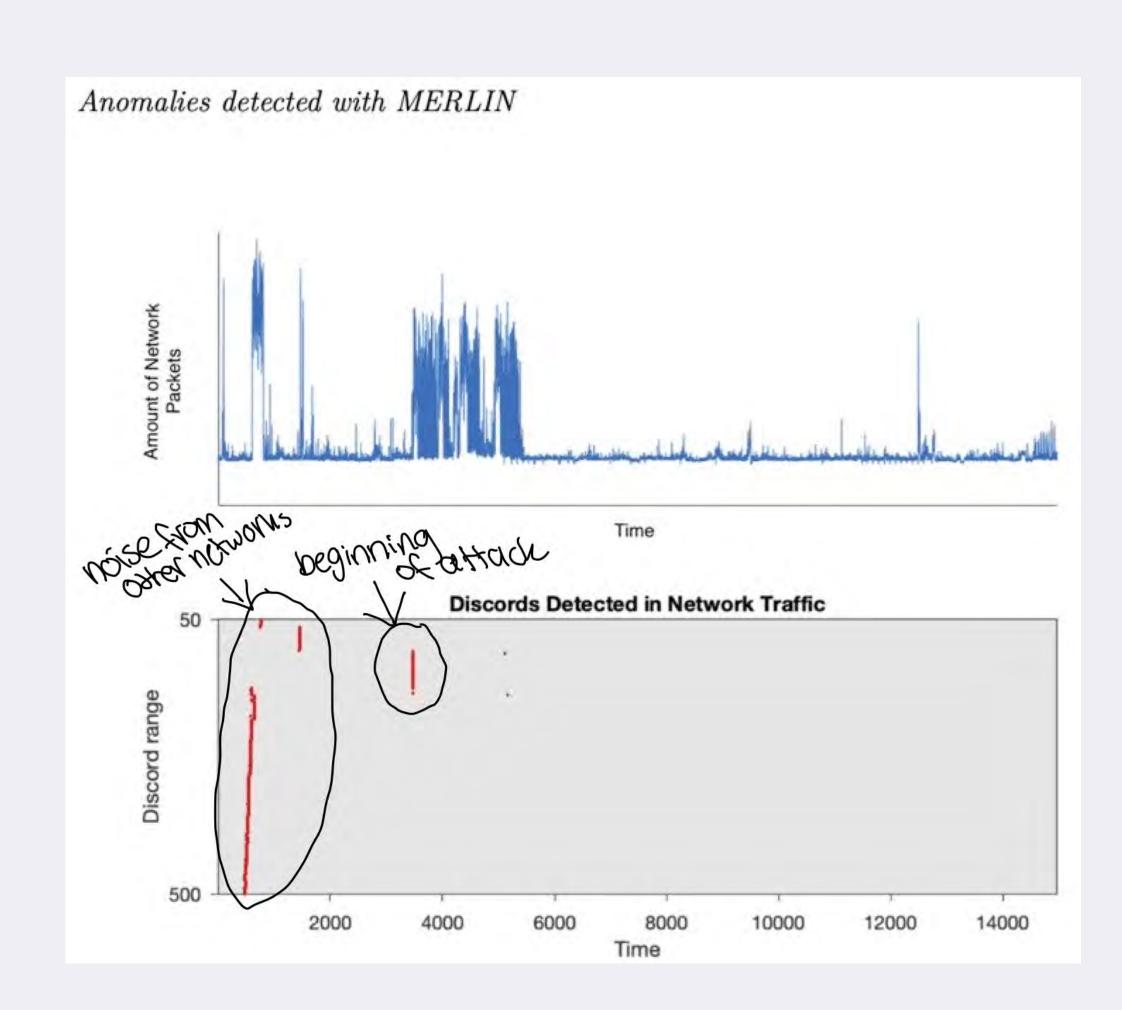
- Every attribute removed except for timestamp
- Added packet count
- Sampled data by aggregating packets to every 0.5s for a total of 14,963 packets

#### Experiments

- MERLIN available in MATLAB
- Four parameters: input file, shortest discord length, largest discord length, whether to output metadata while running
- MERLIN finds anomalies of all lengths [2]
- Able to detect attack when maximum discord length goes above 300
- MERLIN adds linear trend to constant regions to minimize false positives [2]

Experiments with different discord ranges

| Experiment | min discord | max discord | running time (in seconds) | detected $ $ |
|------------|-------------|-------------|---------------------------|--------------|
| 1          | 50          | 100         | 12                        | no           |
| 2          | 50          | 150         | 18                        | no           |
| 3          | 50          | 200         | 38                        | no           |
| 4          | 50          | 300         | 64                        | yes          |
| 5          | 50          | 500         | 153                       | yes          |
| 6          | 100         | 300         | 55                        | yes          |
| 7          | 200         | 300         | 29                        | no           |


Constant Region Error Message

### Analysis

- Cluster around 4000 is deauthentication attack
- Long anomaly in the beginning is noise from other networks
- MERLIN detected about half of anomalous network packets
- Only beginning of attack was detected, therefore sensitivity low
- MERLIN successful in detecting attack because as long as at least one packet labeled as anomalous by MERLIN, attack is considered detected

Results

| Measure                   | Value  | Derivations                |
|---------------------------|--------|----------------------------|
| Sensitivity               | 0.3056 | TPR = TP / (TP + FN)       |
| Specificity               | 0.9907 | SPC = TN / (FP + TN)       |
| Precision                 | 0.0733 | PPV = TP / (TP + FP)       |
| Negative Predictive Value | 0.9983 | NPV = TN / (TN + FN)       |
| False Positive Rate       | 0.0093 | FPR = FP / (FP + TN)       |
| False Discovery Rate      | 0.9267 | FDR = FP / (FP + TP)       |
| False Negative Rate       | 0.6944 | FNR = FN / (FN + TP)       |
| Accuracy                  | 0.9890 | ACC = (TP + TN) / (P + N)  |
| F1 Score                  | 0.1183 | F1 = 2TP / (2TP + FP + FN) |



#### Conclusions and Future Work

- Important to detect DoS attacks because cyberattacks have detrimental effects on our critical infrastructure
- MERLIN was successful in detecting a deauthentication attack on a smart farm
- More research has to be done to evaluate why only the beginning of the attack was detected
- Future work includes applying MERLIN on datasets that have more than one attack
- Running more experiments to see if MERLIN can detect attacks in short succession of each other would be helpful

#### References

[1] Sina Sontowski, Maanak Gupta, Sai Sree Laya Chukkapalli, Mahmoud Abdelsalam, Sudip Mittal, Anupam Joshi, and Ravi Sandhu. Cyber attacks on smart farming infrastructure. In 2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC), pages 135–143, 2020.
[2] Takaaki Nakamura, Makoto Imamura, Ryan Mercer, and Eamonn Keogh. Merlin: Parameter-free discovery of arbitrary length anomalies in massive time series archives. In 2020 IEEE International Conference on Data Mining (ICDM), pages 1190–1195, 2020.

#### Acknowledgement

This work is partially supported by NSF grant 2025682, 1565562 and 2043324.

#### Data

- Collected network traffic with Wireshark over two hours: normal traffic for 30min, then 18s attack traffic, and then normal traffic again until the rest of time
- 1,048,575 packets after removal of non-internet traffic packets
- Includes traffic from nearby networks
- Deauthentication packets make up less than
   0.2% of all packets recorded

#### Data Dictionary

| Attribute             | Required | Format                  | Description                  |
|-----------------------|----------|-------------------------|------------------------------|
| No.                   | No       | $\operatorname{int}$    | packet number                |
| $\operatorname{Time}$ | Yes      | string                  | timestamp                    |
| Source                | No       | $\operatorname{string}$ | origin                       |
| Destination           | No       | $\operatorname{string}$ | $\operatorname{destination}$ |
| Protocol              | No       | $\operatorname{string}$ | protocol                     |
| Length                | No       | integer                 | in bytes                     |
| Info                  | No       | string                  | general details              |