

Tennessee TECH

Background and Major Contributions

- The emergence of the novel coronavirus pandemic has caused a myriad of problems worldwide. One such problem is misinformation, which in itself should be considered a risk.
- Since the outbreak of the COVID-19 pandemic, popular social media platforms are flooded by exaggerated phony news which is affecting our society.
- pertinent tools and Although the existing techniques can support fact-checking and identification of conspiracy, misinformation, and negative sentiment at various stages, a complete end-to-end solution is complicated.
- We propose a thorough analysis and identification system named Online Guard using natural language processing tools and supervised learning techniques to identify the relationship between misinformation from the negative sentiment of COVID19 vaccinerelated tweets and vaccination progress rate and its impact in different countries for a particular time period.

Data Collection and Pre-processing for the Experimentations

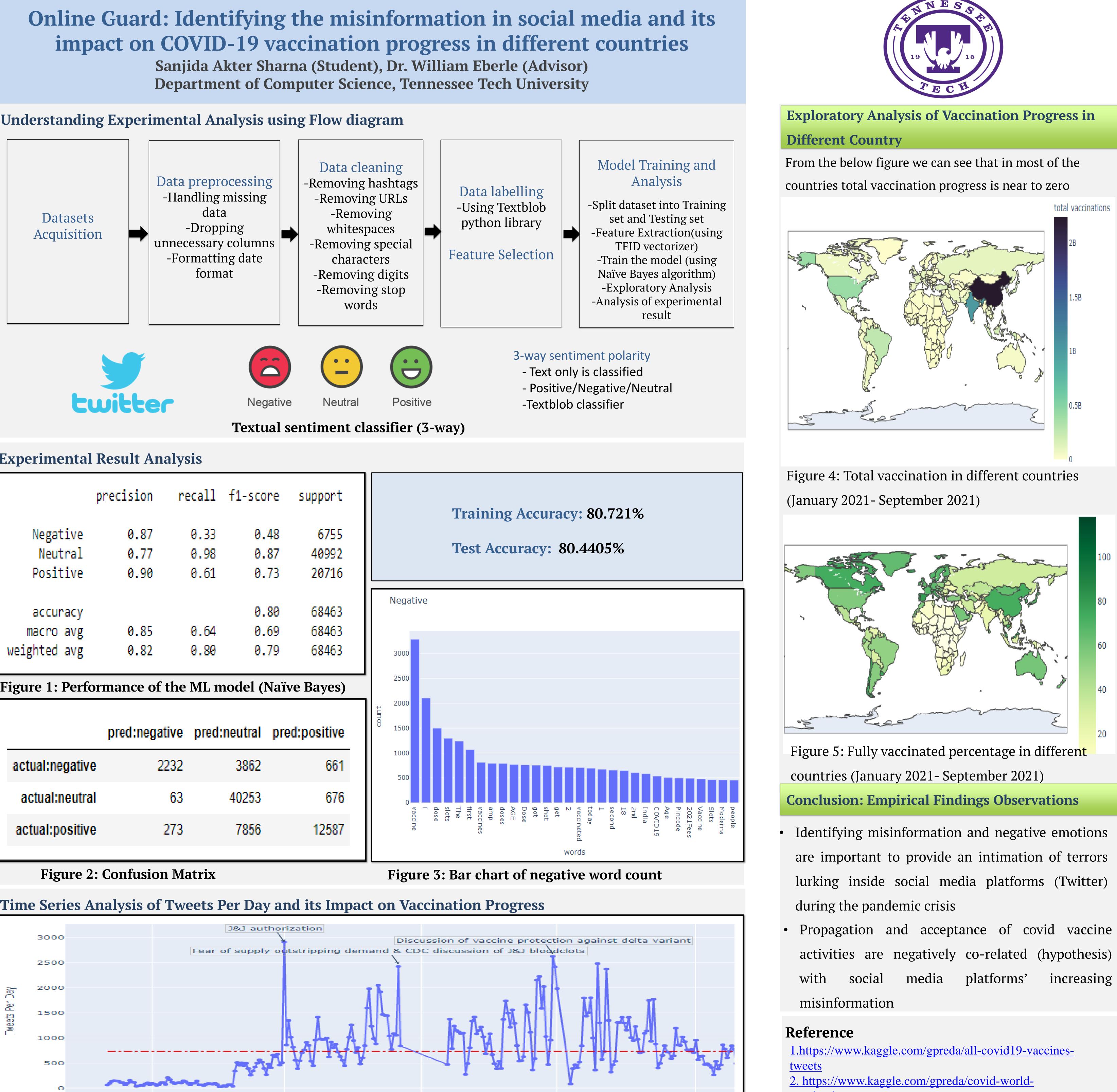
we have collected two data set from the Kaggle site. One is **COVID-19 all vaccines tweet** dataset and another is *country vaccination* dataset.
Table 1: Attribute description For COVID-19 all

 vaccines tweet dataset

Attribute Name	Attribute Description	
User location	The location the twitter user	
text	Text content of the tweet	
date	Date of the tweet	

Table 2: Attribute description For Country
 Vaccination dataset

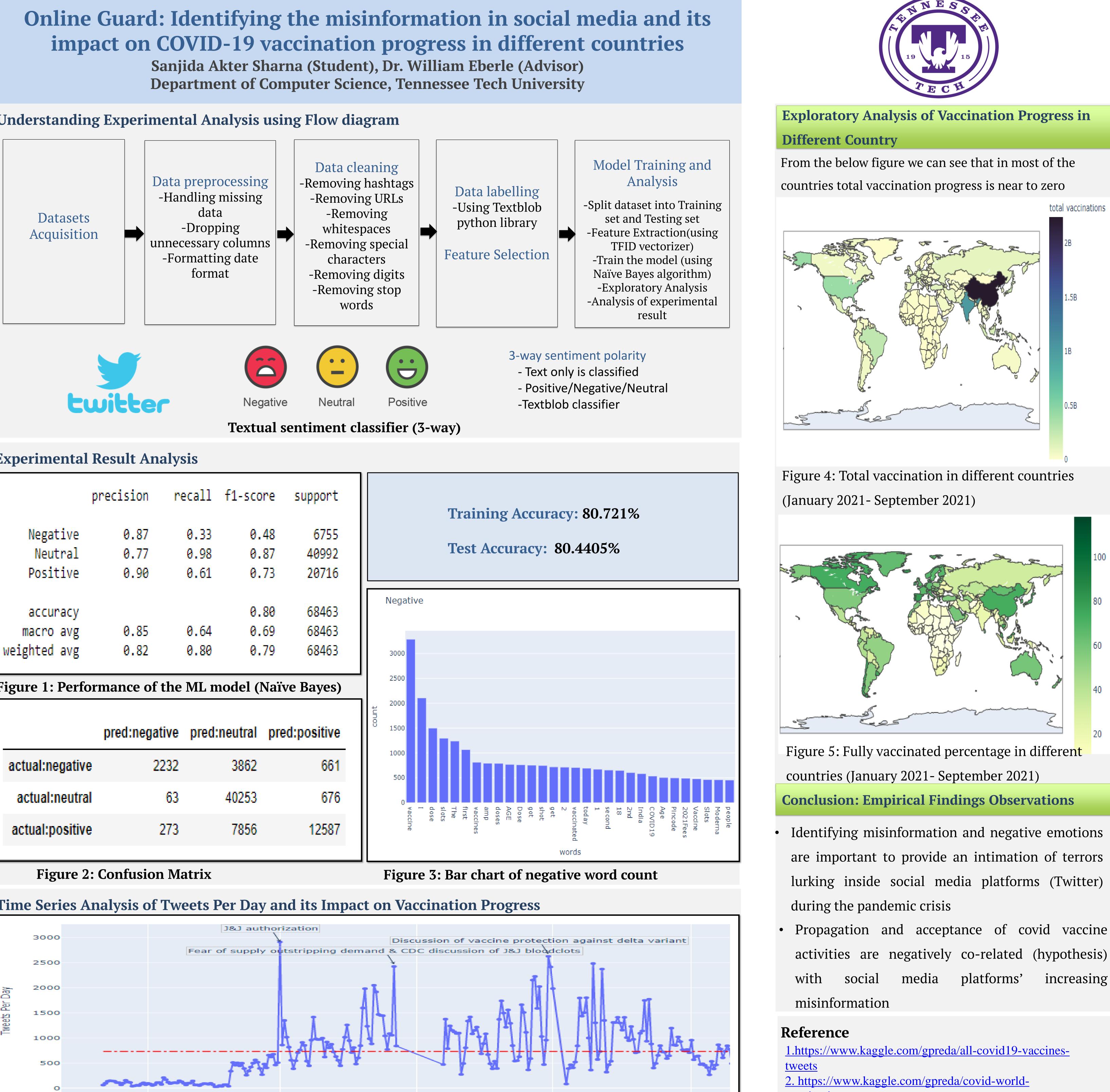
Attribute Name	Attribute Description		
country	The country for which the vaccination information is provided		
date	Date for the data entry		
total_vaccinations	The absolute number of immunizations in the country		
people_vaccinated	The number of people who receive at least one vaccine shot		
people_fully_vaccin ated	The number of people received entire set of vaccine immunization scheme		

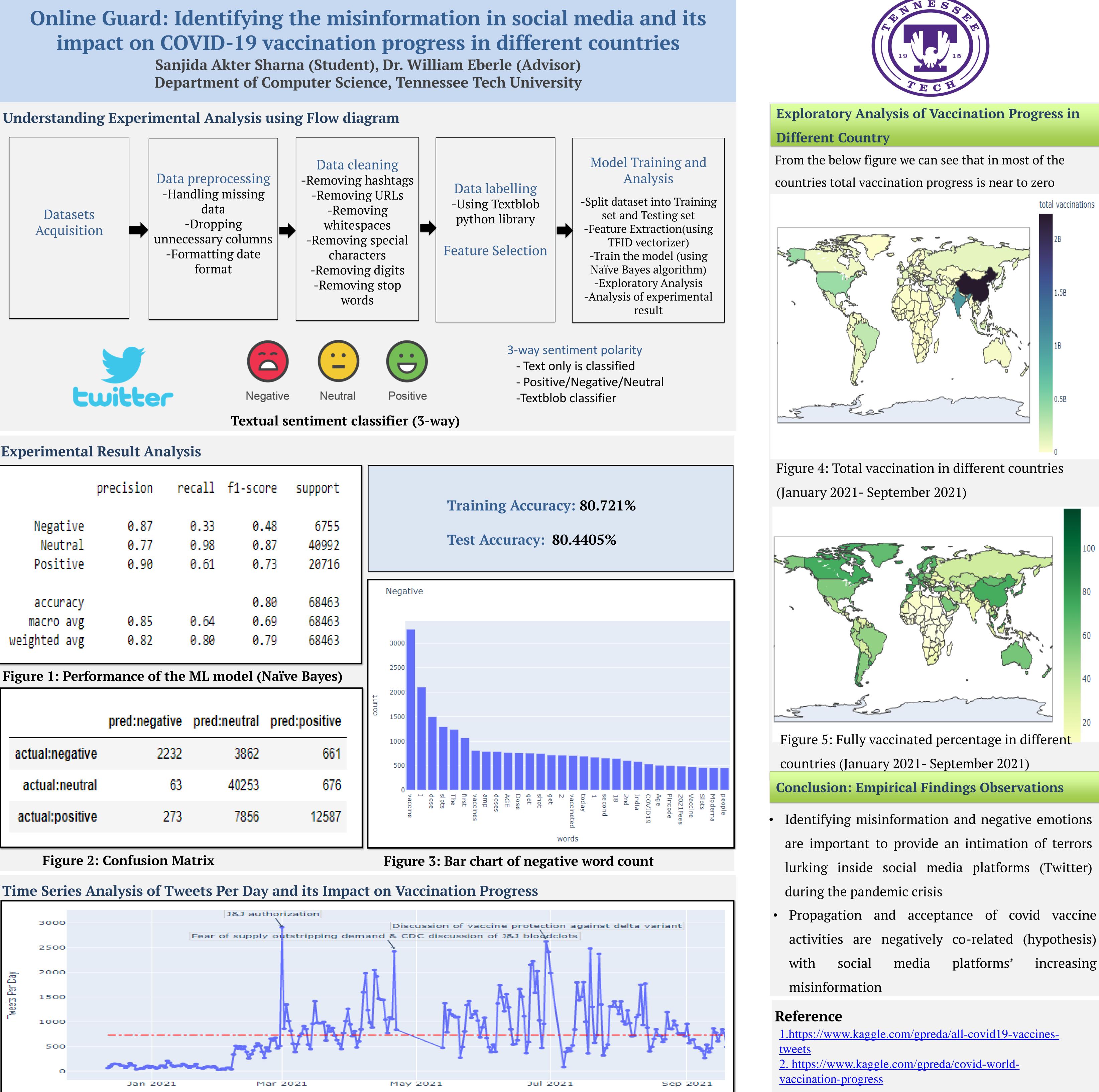


date

	support	f1-score	recall	precision	
	6755	0.48	0.33	0.87	Negative
	40992	0.87	0.98	0.77	Neutral
	20716	0.73	0.61	0.90	Positive
Neg					
	68463	0.80			accuracy
	68463	0.69	0.64	0.85	macro avg
300	68463	0.79	0.80	0.82	weighted avg

	pred:negative	pred:neutral	pred:positive
actual:negative	2232	3862	661
actual:neutral	63	40253	676
actual:positive	273	7856	12587







increasing